{"title":"一种基于确定性横向位移和介质电泳协同作用的纳米级细胞外囊泡分化微流控装置","authors":"Dayin Wang, J. Zhao, Yuan Luo","doi":"10.1109/NEMS57332.2023.10190859","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel microfluidic device based on the synergy of deterministic lateral displacement (DLD) and dielectrophoresis (DEP) techniques, which enables the differentiation of exosomes from both large extracellular vesicles (e.g. apoptotic vesicles, ectosomes) and particles that are close in size but differ in biochemical compositions (e.g. Lipoproteins, Exomeres, Retroviruses). We fabricated nanoscale pillar arrays through $\\gt1 ~\\mu$m resolution photolithography by making innovative use of thermal oxidation, which significantly reduces fabrication costs by avoiding the use of high-precision lithography. We further proceeded to optimize device design with simulation study and conduct experimental verification.","PeriodicalId":142575,"journal":{"name":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Microfluidic Device for Nano-scale Extracellular Vesicles Differentiation Via The Synergetic Effect of Deterministic Lateral Displacement and Dielectrophoresis\",\"authors\":\"Dayin Wang, J. Zhao, Yuan Luo\",\"doi\":\"10.1109/NEMS57332.2023.10190859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel microfluidic device based on the synergy of deterministic lateral displacement (DLD) and dielectrophoresis (DEP) techniques, which enables the differentiation of exosomes from both large extracellular vesicles (e.g. apoptotic vesicles, ectosomes) and particles that are close in size but differ in biochemical compositions (e.g. Lipoproteins, Exomeres, Retroviruses). We fabricated nanoscale pillar arrays through $\\\\gt1 ~\\\\mu$m resolution photolithography by making innovative use of thermal oxidation, which significantly reduces fabrication costs by avoiding the use of high-precision lithography. We further proceeded to optimize device design with simulation study and conduct experimental verification.\",\"PeriodicalId\":142575,\"journal\":{\"name\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS57332.2023.10190859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS57332.2023.10190859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Microfluidic Device for Nano-scale Extracellular Vesicles Differentiation Via The Synergetic Effect of Deterministic Lateral Displacement and Dielectrophoresis
This paper proposes a novel microfluidic device based on the synergy of deterministic lateral displacement (DLD) and dielectrophoresis (DEP) techniques, which enables the differentiation of exosomes from both large extracellular vesicles (e.g. apoptotic vesicles, ectosomes) and particles that are close in size but differ in biochemical compositions (e.g. Lipoproteins, Exomeres, Retroviruses). We fabricated nanoscale pillar arrays through $\gt1 ~\mu$m resolution photolithography by making innovative use of thermal oxidation, which significantly reduces fabrication costs by avoiding the use of high-precision lithography. We further proceeded to optimize device design with simulation study and conduct experimental verification.