{"title":"时间序列数据演化神经树模型的贝叶斯进化算法","authors":"Dong-Yeon Cho, Byoung-Tak Zhang","doi":"10.1109/CEC.2000.870825","DOIUrl":null,"url":null,"abstract":"Model induction plays an important role in many fields of science and engineering to analyze data. Specifically, the performance of time series prediction whose objectives are to find out the dynamics of the underlying process in given data is greatly affected by the model. Bayesian evolutionary algorithms have been proposed as a method for automatic model induction from data. We apply Bayesian evolutionary algorithms (BEAs) to evolving neural tree models of time series data. The performances of various BEAs are compared on two time series prediction problems by varying the population size and the type of variation operations. Our experimental results support that population based BEAs with unlimited crossover find good models more efficiently than single individual BEAs, parallelized individual based BEAs, and population based BEAs with limited crossover.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian evolutionary algorithms for evolving neural tree models of time series data\",\"authors\":\"Dong-Yeon Cho, Byoung-Tak Zhang\",\"doi\":\"10.1109/CEC.2000.870825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model induction plays an important role in many fields of science and engineering to analyze data. Specifically, the performance of time series prediction whose objectives are to find out the dynamics of the underlying process in given data is greatly affected by the model. Bayesian evolutionary algorithms have been proposed as a method for automatic model induction from data. We apply Bayesian evolutionary algorithms (BEAs) to evolving neural tree models of time series data. The performances of various BEAs are compared on two time series prediction problems by varying the population size and the type of variation operations. Our experimental results support that population based BEAs with unlimited crossover find good models more efficiently than single individual BEAs, parallelized individual based BEAs, and population based BEAs with limited crossover.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian evolutionary algorithms for evolving neural tree models of time series data
Model induction plays an important role in many fields of science and engineering to analyze data. Specifically, the performance of time series prediction whose objectives are to find out the dynamics of the underlying process in given data is greatly affected by the model. Bayesian evolutionary algorithms have been proposed as a method for automatic model induction from data. We apply Bayesian evolutionary algorithms (BEAs) to evolving neural tree models of time series data. The performances of various BEAs are compared on two time series prediction problems by varying the population size and the type of variation operations. Our experimental results support that population based BEAs with unlimited crossover find good models more efficiently than single individual BEAs, parallelized individual based BEAs, and population based BEAs with limited crossover.