{"title":"DTS200三罐系统有限时间收敛容错控制及其实验验证","authors":"M. Basin, Linlin Li, M. Krueger, S. Ding","doi":"10.1109/RASM.2015.7154633","DOIUrl":null,"url":null,"abstract":"This paper presents a fault-tolerant continuous super-twisting control algorithm for systems of dimension more than one, subject to Lipshitzian and non-Lipshitzian bounded disturbances. The conditions of finite-time convergence of the entire system state to the origin are obtained. An experimental verification of the designed fault-tolerant algorithm is conducted for a DTS200 three-tank system through varying fault sources, disturbances, input conditions, and inter-tank connections.","PeriodicalId":297041,"journal":{"name":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A finite-time-convergent fault-tolerant control and its experimental verification for DTS200 three-tank system\",\"authors\":\"M. Basin, Linlin Li, M. Krueger, S. Ding\",\"doi\":\"10.1109/RASM.2015.7154633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fault-tolerant continuous super-twisting control algorithm for systems of dimension more than one, subject to Lipshitzian and non-Lipshitzian bounded disturbances. The conditions of finite-time convergence of the entire system state to the origin are obtained. An experimental verification of the designed fault-tolerant algorithm is conducted for a DTS200 three-tank system through varying fault sources, disturbances, input conditions, and inter-tank connections.\",\"PeriodicalId\":297041,\"journal\":{\"name\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASM.2015.7154633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASM.2015.7154633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finite-time-convergent fault-tolerant control and its experimental verification for DTS200 three-tank system
This paper presents a fault-tolerant continuous super-twisting control algorithm for systems of dimension more than one, subject to Lipshitzian and non-Lipshitzian bounded disturbances. The conditions of finite-time convergence of the entire system state to the origin are obtained. An experimental verification of the designed fault-tolerant algorithm is conducted for a DTS200 three-tank system through varying fault sources, disturbances, input conditions, and inter-tank connections.