{"title":"基于声学特征的SVM和ELM技术的语音欺骗检测","authors":"Raoudha Rahmeni, A. B. Aicha, Y. B. Ayed","doi":"10.1109/ATSIP49331.2020.9231799","DOIUrl":null,"url":null,"abstract":"Now-a-days, the automatic speaker verification (ASV) systems are weak against attacks specially the voice conversion attacks and the speech synthesis attacks. To improve the robustness of the ASV systems, an anti-spoofing approach are developped to detect the spoofed speech from human speech. In this study, we focus on considering some acoustic features were proposed to differenciate spoofed speech from humain speech. We have used the proposed features with data from ASVspoof 2015 corpora. For the classification, we use Extreme learning machine (ELM) and Support Vector Machines (SVM) to obtain features and classified them to genuine or spoofed.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speech spoofing detection using SVM and ELM technique with acoustic features\",\"authors\":\"Raoudha Rahmeni, A. B. Aicha, Y. B. Ayed\",\"doi\":\"10.1109/ATSIP49331.2020.9231799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now-a-days, the automatic speaker verification (ASV) systems are weak against attacks specially the voice conversion attacks and the speech synthesis attacks. To improve the robustness of the ASV systems, an anti-spoofing approach are developped to detect the spoofed speech from human speech. In this study, we focus on considering some acoustic features were proposed to differenciate spoofed speech from humain speech. We have used the proposed features with data from ASVspoof 2015 corpora. For the classification, we use Extreme learning machine (ELM) and Support Vector Machines (SVM) to obtain features and classified them to genuine or spoofed.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speech spoofing detection using SVM and ELM technique with acoustic features
Now-a-days, the automatic speaker verification (ASV) systems are weak against attacks specially the voice conversion attacks and the speech synthesis attacks. To improve the robustness of the ASV systems, an anti-spoofing approach are developped to detect the spoofed speech from human speech. In this study, we focus on considering some acoustic features were proposed to differenciate spoofed speech from humain speech. We have used the proposed features with data from ASVspoof 2015 corpora. For the classification, we use Extreme learning machine (ELM) and Support Vector Machines (SVM) to obtain features and classified them to genuine or spoofed.