敏捷捕获与全身MPC和黑盒策略学习

Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu
{"title":"敏捷捕获与全身MPC和黑盒策略学习","authors":"Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu","doi":"10.48550/arXiv.2306.08205","DOIUrl":null,"url":null,"abstract":"We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing\"classical\"and\"learning-based\"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agile Catching with Whole-Body MPC and Blackbox Policy Learning\",\"authors\":\"Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu\",\"doi\":\"10.48550/arXiv.2306.08205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing\\\"classical\\\"and\\\"learning-based\\\"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.08205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.08205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们解决了敏捷机器人中的一个基准任务:捕捉高速抛出的物体。这是一项具有挑战性的任务,涉及跟踪,拦截和抱起投掷的物体,只能通过对物体的视觉观察和机器人的本体感觉状态,所有这些都在几分之一秒内完成。我们提出了两种根本不同的解决策略的相对优点:(i)使用加速约束轨迹优化的模型预测控制,以及(ii)使用零阶优化的强化学习。通过广泛的硬件实验,我们提供了各种性能权衡的见解,包括样本效率,模拟到真实的转移,对分布转移的鲁棒性和全身多模态。最后,我们提出了融合“经典”和“基于学习”的敏捷机器人控制技术的建议。我们的实验视频可以在https://sites.google.com/view/agile-catching上找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agile Catching with Whole-Body MPC and Blackbox Policy Learning
We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing"classical"and"learning-based"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Catching with Whole-Body MPC and Blackbox Policy Learning Time Dependent Inverse Optimal Control using Trigonometric Basis Functions Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning Black-Box vs. Gray-Box: A Case Study on Learning Table Tennis Ball Trajectory Prediction with Spin and Impacts Model-based Validation as Probabilistic Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1