Sneha D. Goenka, Yatish Turakhia, B. Paten, M. Horowitz
{"title":"SegAlign:一个可扩展的基于gpu的全基因组比对器","authors":"Sneha D. Goenka, Yatish Turakhia, B. Paten, M. Horowitz","doi":"10.1109/SC41405.2020.00043","DOIUrl":null,"url":null,"abstract":"Pairwise Whole Genome Alignment (WGA) is a crucial first step to understanding evolution at the DNA sequence-level. Pairwise WGA of thousands of currently available species genomes could help make biological discoveries, however, computing them for even a fraction of the millions of possible pairs is prohibitive – WGA of a single pair of vertebrate genomes (human-mouse) takes 11 hours on a 96-core Amazon Web Services (AWS) instance (c5.24xlarge). This paper presents SegAlign – a scalable, GPU-accelerated system for computing pairwise WGA. SegAlign is based on the standard seed-filter-extend heuristic, in which the filtering stage dominates the runtime (e.g. 98% for human-mouse WGA), and is accelerated using GPU(s). Using three vertebrate genome pairs, we show that SegAlign provides a speedup of up to $14 \\times $ on an 8-GPU, 64-core AWS instance (p3.16xlarge) for WGA and nearly $2.3 \\times $ reduction in dollar cost. SegAlign also allows parallelization over multiple GPU nodes and scales efficiently.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SegAlign: A Scalable GPU-Based Whole Genome Aligner\",\"authors\":\"Sneha D. Goenka, Yatish Turakhia, B. Paten, M. Horowitz\",\"doi\":\"10.1109/SC41405.2020.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise Whole Genome Alignment (WGA) is a crucial first step to understanding evolution at the DNA sequence-level. Pairwise WGA of thousands of currently available species genomes could help make biological discoveries, however, computing them for even a fraction of the millions of possible pairs is prohibitive – WGA of a single pair of vertebrate genomes (human-mouse) takes 11 hours on a 96-core Amazon Web Services (AWS) instance (c5.24xlarge). This paper presents SegAlign – a scalable, GPU-accelerated system for computing pairwise WGA. SegAlign is based on the standard seed-filter-extend heuristic, in which the filtering stage dominates the runtime (e.g. 98% for human-mouse WGA), and is accelerated using GPU(s). Using three vertebrate genome pairs, we show that SegAlign provides a speedup of up to $14 \\\\times $ on an 8-GPU, 64-core AWS instance (p3.16xlarge) for WGA and nearly $2.3 \\\\times $ reduction in dollar cost. SegAlign also allows parallelization over multiple GPU nodes and scales efficiently.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
摘要
成对全基因组比对(Pairwise Whole Genome Alignment, WGA)是在DNA序列水平上理解进化的关键的第一步。对目前可用的数千种物种基因组的成对WGA可以帮助进行生物学发现,然而,对数百万对可能的物种基因组中的一小部分进行计算是令人生畏的——对单个脊椎动物基因组(人类-小鼠)进行WGA需要在96核Amazon Web Services (AWS)实例上花费11个小时(c5.24xlarge)。本文介绍了SegAlign -一个可扩展的,gpu加速的系统,用于计算成对的WGA。SegAlign基于标准的种子过滤器扩展启发式,其中过滤阶段占运行时的主导地位(例如,人鼠WGA为98%),并使用GPU加速。使用三个脊椎动物基因组对,我们表明SegAlign在8个gpu, 64核AWS实例(p3.16xlarge)上为WGA提供了高达14倍的加速,并将美元成本降低了近2.3倍。SegAlign还允许在多个GPU节点上并行化并有效扩展。
SegAlign: A Scalable GPU-Based Whole Genome Aligner
Pairwise Whole Genome Alignment (WGA) is a crucial first step to understanding evolution at the DNA sequence-level. Pairwise WGA of thousands of currently available species genomes could help make biological discoveries, however, computing them for even a fraction of the millions of possible pairs is prohibitive – WGA of a single pair of vertebrate genomes (human-mouse) takes 11 hours on a 96-core Amazon Web Services (AWS) instance (c5.24xlarge). This paper presents SegAlign – a scalable, GPU-accelerated system for computing pairwise WGA. SegAlign is based on the standard seed-filter-extend heuristic, in which the filtering stage dominates the runtime (e.g. 98% for human-mouse WGA), and is accelerated using GPU(s). Using three vertebrate genome pairs, we show that SegAlign provides a speedup of up to $14 \times $ on an 8-GPU, 64-core AWS instance (p3.16xlarge) for WGA and nearly $2.3 \times $ reduction in dollar cost. SegAlign also allows parallelization over multiple GPU nodes and scales efficiently.