Earlybird:实时搜索Twitter

Michael Busch, Krishna Gade, B. Larson, Patrick Lok, Samuel B. Luckenbill, Jimmy J. Lin
{"title":"Earlybird:实时搜索Twitter","authors":"Michael Busch, Krishna Gade, B. Larson, Patrick Lok, Samuel B. Luckenbill, Jimmy J. Lin","doi":"10.1109/ICDE.2012.149","DOIUrl":null,"url":null,"abstract":"The web today is increasingly characterized by social and real-time signals, which we believe represent two frontiers in information retrieval. In this paper, we present Early bird, the core retrieval engine that powers Twitter's real-time search service. Although Early bird builds and maintains inverted indexes like nearly all modern retrieval engines, its index structures differ from those built to support traditional web search. We describe these differences and present the rationale behind our design. A key requirement of real-time search is the ability to ingest content rapidly and make it searchable immediately, while concurrently supporting low-latency, high-throughput query evaluation. These demands are met with a single-writer, multiple-reader concurrency model and the targeted use of memory barriers. Early bird represents a point in the design space of real-time search engines that has worked well for Twitter's needs. By sharing our experiences, we hope to spur additional interest and innovation in this exciting space.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Earlybird: Real-Time Search at Twitter\",\"authors\":\"Michael Busch, Krishna Gade, B. Larson, Patrick Lok, Samuel B. Luckenbill, Jimmy J. Lin\",\"doi\":\"10.1109/ICDE.2012.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The web today is increasingly characterized by social and real-time signals, which we believe represent two frontiers in information retrieval. In this paper, we present Early bird, the core retrieval engine that powers Twitter's real-time search service. Although Early bird builds and maintains inverted indexes like nearly all modern retrieval engines, its index structures differ from those built to support traditional web search. We describe these differences and present the rationale behind our design. A key requirement of real-time search is the ability to ingest content rapidly and make it searchable immediately, while concurrently supporting low-latency, high-throughput query evaluation. These demands are met with a single-writer, multiple-reader concurrency model and the targeted use of memory barriers. Early bird represents a point in the design space of real-time search engines that has worked well for Twitter's needs. By sharing our experiences, we hope to spur additional interest and innovation in this exciting space.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

摘要

今天的网络越来越多地以社交和实时信号为特征,我们认为这代表了信息检索的两个前沿。在本文中,我们介绍了Early bird,这是Twitter实时搜索服务的核心检索引擎。尽管Early bird像几乎所有现代检索引擎一样构建和维护反向索引,但它的索引结构与支持传统网络搜索的索引结构不同。我们将描述这些差异,并介绍我们设计背后的基本原理。实时搜索的一个关键需求是能够快速摄取内容并使其立即可搜索,同时支持低延迟、高吞吐量的查询评估。这些需求可以通过单写入器、多读取器并发模型和有针对性地使用内存屏障来满足。Early bird代表了实时搜索引擎设计领域的一个观点,它很好地满足了Twitter的需求。通过分享我们的经验,我们希望在这个令人兴奋的领域激发更多的兴趣和创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Earlybird: Real-Time Search at Twitter
The web today is increasingly characterized by social and real-time signals, which we believe represent two frontiers in information retrieval. In this paper, we present Early bird, the core retrieval engine that powers Twitter's real-time search service. Although Early bird builds and maintains inverted indexes like nearly all modern retrieval engines, its index structures differ from those built to support traditional web search. We describe these differences and present the rationale behind our design. A key requirement of real-time search is the ability to ingest content rapidly and make it searchable immediately, while concurrently supporting low-latency, high-throughput query evaluation. These demands are met with a single-writer, multiple-reader concurrency model and the targeted use of memory barriers. Early bird represents a point in the design space of real-time search engines that has worked well for Twitter's needs. By sharing our experiences, we hope to spur additional interest and innovation in this exciting space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1