用聚类技术分析西班牙的气象条件

Q1 Mathematics Journal of Applied Logic Pub Date : 2017-11-01 DOI:10.1016/j.jal.2016.11.026
Ángel Arroyo , Álvaro Herrero , Verónica Tricio , Emilio Corchado
{"title":"用聚类技术分析西班牙的气象条件","authors":"Ángel Arroyo ,&nbsp;Álvaro Herrero ,&nbsp;Verónica Tricio ,&nbsp;Emilio Corchado","doi":"10.1016/j.jal.2016.11.026","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive analysis of clustering techniques is presented in this paper through their application to data on meteorological conditions. Six partitional and hierarchical clustering techniques (<em>k</em>-means, <em>k</em>-medoids, SOM <em>k</em>-means, Agglomerative Hierarchical Clustering, and Clustering based on Gaussian Mixture Models) with different distance criteria, together with some clustering evaluation measures (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette criterion clustering evaluation object), present various analyses of the main climatic zones in Spain. Real-life data sets, recorded by AEMET (Spanish Meteorological Agency) at four of its weather stations, are analyzed in order to characterize the actual weather conditions at each location. The clustering techniques process the data on some of the main daily meteorological variables collected at these stations over six years between 2004 and 2010.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"24 ","pages":"Pages 76-89"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.026","citationCount":"26","resultStr":"{\"title\":\"Analysis of meteorological conditions in Spain by means of clustering techniques\",\"authors\":\"Ángel Arroyo ,&nbsp;Álvaro Herrero ,&nbsp;Verónica Tricio ,&nbsp;Emilio Corchado\",\"doi\":\"10.1016/j.jal.2016.11.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A comprehensive analysis of clustering techniques is presented in this paper through their application to data on meteorological conditions. Six partitional and hierarchical clustering techniques (<em>k</em>-means, <em>k</em>-medoids, SOM <em>k</em>-means, Agglomerative Hierarchical Clustering, and Clustering based on Gaussian Mixture Models) with different distance criteria, together with some clustering evaluation measures (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette criterion clustering evaluation object), present various analyses of the main climatic zones in Spain. Real-life data sets, recorded by AEMET (Spanish Meteorological Agency) at four of its weather stations, are analyzed in order to characterize the actual weather conditions at each location. The clustering techniques process the data on some of the main daily meteorological variables collected at these stations over six years between 2004 and 2010.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"24 \",\"pages\":\"Pages 76-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.026\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

摘要

本文通过聚类技术在气象条件数据上的应用,对聚类技术进行了全面的分析。基于不同距离标准的k-means、k-medoids、SOM k-means、Agglomerative hierarchical clustering和基于高斯混合模型的聚类方法,以及Calinski-Harabasz、Davies-Bouldin、Gap和Silhouette标准聚类评价对象等聚类评价指标,对西班牙主要气候带进行了各种分析。AEMET(西班牙气象局)在其四个气象站记录的真实数据集进行了分析,以便描述每个地点的实际天气状况。聚类技术处理了2004年至2010年6年间这些站点收集的一些主要每日气象变量的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of meteorological conditions in Spain by means of clustering techniques

A comprehensive analysis of clustering techniques is presented in this paper through their application to data on meteorological conditions. Six partitional and hierarchical clustering techniques (k-means, k-medoids, SOM k-means, Agglomerative Hierarchical Clustering, and Clustering based on Gaussian Mixture Models) with different distance criteria, together with some clustering evaluation measures (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette criterion clustering evaluation object), present various analyses of the main climatic zones in Spain. Real-life data sets, recorded by AEMET (Spanish Meteorological Agency) at four of its weather stations, are analyzed in order to characterize the actual weather conditions at each location. The clustering techniques process the data on some of the main daily meteorological variables collected at these stations over six years between 2004 and 2010.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
期刊最新文献
Editorial Board Editorial Board Formal analysis of SEU mitigation for early dependability and performability analysis of FPGA-based space applications Logical Investigations on Assertion and Denial Natural deduction for bi-intuitionistic logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1