语言设置中权重信息不完全的多属性决策的TOPSIS方法

Jianli Wei
{"title":"语言设置中权重信息不完全的多属性决策的TOPSIS方法","authors":"Jianli Wei","doi":"10.4156/JCIT.VOL5.ISSUE10.23","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the multiple attribute decision making problems with linguistic information, in which the information about attribute weights is incompletely known, and the attribute values take the form of linguistic variables. We develop a new method to solve linguistic MADM with incomplete weight. In order to get the weight vector of the attribute, we establish an optimization model based on the basic ideal of traditional TOPSIS, by which the attribute weights can be determined. Based on this model, we develop a TOPSIS method to rank alternatives and to select the most desirable one(s). Finally, an example is shown to highlight the procedure of the proposed algorithm at the end of this paper.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"TOPSIS Method for Multiple Attribute Decision Making with Incomplete Weight Information in Linguistic Setting\",\"authors\":\"Jianli Wei\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE10.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate the multiple attribute decision making problems with linguistic information, in which the information about attribute weights is incompletely known, and the attribute values take the form of linguistic variables. We develop a new method to solve linguistic MADM with incomplete weight. In order to get the weight vector of the attribute, we establish an optimization model based on the basic ideal of traditional TOPSIS, by which the attribute weights can be determined. Based on this model, we develop a TOPSIS method to rank alternatives and to select the most desirable one(s). Finally, an example is shown to highlight the procedure of the proposed algorithm at the end of this paper.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE10.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE10.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文的目的是研究具有语言信息的多属性决策问题,其中属性权重信息不完全已知,属性值采用语言变量的形式。提出了一种求解不完全权值语言MADM的新方法。为了得到属性的权重向量,我们基于传统TOPSIS的基本理想,建立了一个优化模型,通过该模型可以确定属性的权重。在此模型的基础上,我们开发了一种TOPSIS方法来对备选方案进行排序并选择最理想的方案。最后,通过一个算例说明了该算法的实现过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TOPSIS Method for Multiple Attribute Decision Making with Incomplete Weight Information in Linguistic Setting
The aim of this paper is to investigate the multiple attribute decision making problems with linguistic information, in which the information about attribute weights is incompletely known, and the attribute values take the form of linguistic variables. We develop a new method to solve linguistic MADM with incomplete weight. In order to get the weight vector of the attribute, we establish an optimization model based on the basic ideal of traditional TOPSIS, by which the attribute weights can be determined. Based on this model, we develop a TOPSIS method to rank alternatives and to select the most desirable one(s). Finally, an example is shown to highlight the procedure of the proposed algorithm at the end of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1