基于用户现有兴趣和潜在兴趣建模的图神经新闻推荐

Zhaopeng Qiu, Yunfan Hu, Xian Wu
{"title":"基于用户现有兴趣和潜在兴趣建模的图神经新闻推荐","authors":"Zhaopeng Qiu, Yunfan Hu, Xian Wu","doi":"10.1145/3511708","DOIUrl":null,"url":null,"abstract":"Personalized news recommendations can alleviate the information overload problem. To enable personalized recommendation, one critical step is to learn a comprehensive user representation to model her/his interests. Many existing works learn user representations from the historical clicked news articles, which reflect their existing interests. However, these approaches ignore users’ potential interests and pay less attention to news that may interest the users in the future. To address this problem, we propose a novel Graph neural news Recommendation model with user Existing and Potential interest modeling, named GREP. Different from existing works, GREP introduces three modules to jointly model users’ existing and potential interests: (1) Existing Interest Encoding module mines user historical clicked news and applies the multi-head self-attention mechanism to capture the relatedness among the news; (2) Potential Interest Encoding module leverages the graph neural network to explore the user potential interests on the knowledge graph; and (3) Bi-directional Interaction module dynamically builds a news-entity bipartite graph to further enrich two interest representations. Finally, GREP combines the existing and potential interest representations to represent the user and leverages a prediction layer to estimate the clicking probability of the candidate news. Experiments on two real-world large-scale datasets demonstrate the state-of-the-art performance of GREP.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"113 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Graph Neural News Recommendation with User Existing and Potential Interest Modeling\",\"authors\":\"Zhaopeng Qiu, Yunfan Hu, Xian Wu\",\"doi\":\"10.1145/3511708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized news recommendations can alleviate the information overload problem. To enable personalized recommendation, one critical step is to learn a comprehensive user representation to model her/his interests. Many existing works learn user representations from the historical clicked news articles, which reflect their existing interests. However, these approaches ignore users’ potential interests and pay less attention to news that may interest the users in the future. To address this problem, we propose a novel Graph neural news Recommendation model with user Existing and Potential interest modeling, named GREP. Different from existing works, GREP introduces three modules to jointly model users’ existing and potential interests: (1) Existing Interest Encoding module mines user historical clicked news and applies the multi-head self-attention mechanism to capture the relatedness among the news; (2) Potential Interest Encoding module leverages the graph neural network to explore the user potential interests on the knowledge graph; and (3) Bi-directional Interaction module dynamically builds a news-entity bipartite graph to further enrich two interest representations. Finally, GREP combines the existing and potential interest representations to represent the user and leverages a prediction layer to estimate the clicking probability of the candidate news. Experiments on two real-world large-scale datasets demonstrate the state-of-the-art performance of GREP.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"113 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

个性化新闻推荐可以缓解信息过载的问题。为了实现个性化推荐,一个关键步骤是学习一个全面的用户表示来建模她/他的兴趣。许多现有作品从历史点击新闻文章中学习用户表示,这反映了他们现有的兴趣。然而,这些方法忽略了用户潜在的兴趣,对用户未来可能感兴趣的新闻关注较少。为了解决这个问题,我们提出了一种新的基于用户现有兴趣和潜在兴趣建模的图神经新闻推荐模型,称为GREP。与现有作品不同的是,GREP引入了三个模块对用户现有和潜在兴趣进行联合建模:(1)现有兴趣编码模块挖掘用户历史点击新闻,并采用多头自关注机制捕捉新闻之间的相关性;(2)潜在兴趣编码模块利用图神经网络在知识图上挖掘用户潜在兴趣;(3)双向交互模块动态构建新闻实体二部图,进一步丰富两种兴趣表示。最后,GREP结合现有的和潜在的兴趣表示来表示用户,并利用预测层来估计候选新闻的点击概率。在两个真实世界的大规模数据集上的实验证明了GREP的最先进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Neural News Recommendation with User Existing and Potential Interest Modeling
Personalized news recommendations can alleviate the information overload problem. To enable personalized recommendation, one critical step is to learn a comprehensive user representation to model her/his interests. Many existing works learn user representations from the historical clicked news articles, which reflect their existing interests. However, these approaches ignore users’ potential interests and pay less attention to news that may interest the users in the future. To address this problem, we propose a novel Graph neural news Recommendation model with user Existing and Potential interest modeling, named GREP. Different from existing works, GREP introduces three modules to jointly model users’ existing and potential interests: (1) Existing Interest Encoding module mines user historical clicked news and applies the multi-head self-attention mechanism to capture the relatedness among the news; (2) Potential Interest Encoding module leverages the graph neural network to explore the user potential interests on the knowledge graph; and (3) Bi-directional Interaction module dynamically builds a news-entity bipartite graph to further enrich two interest representations. Finally, GREP combines the existing and potential interest representations to represent the user and leverages a prediction layer to estimate the clicking probability of the candidate news. Experiments on two real-world large-scale datasets demonstrate the state-of-the-art performance of GREP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning-based Short-term Rainfall Prediction from Sky Data Incremental Feature Spaces Learning with Label Scarcity Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series Segment-Wise Time-Varying Dynamic Bayesian Network with Graph Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1