{"title":"SHMEMGraph:使用单侧通信的高效和平衡的图处理","authors":"Huansong Fu, Manjunath Gorentla Venkata, Shaeke Salman, N. Imam, Weikuan Yu","doi":"10.1109/CCGRID.2018.00078","DOIUrl":null,"url":null,"abstract":"State-of-the-art synchronous graph processing frameworks face both inefficiency and imbalance issues that cause their performance to be suboptimal. These issues include the inefficiency of communication and the imbalanced graph computation/communication costs in an iteration. We propose to replace their conventional two-sided communication model with the one-sided counterpart. Accordingly, we design SHMEMGraph, an efficient and balanced graph processing framework that is formulated across a global memory space and takes advantage of the flexibility and efficiency of one-sided communication for graph processing. Through an efficient one-sided communication channel, SHMEMGraph utilizes the high-performance operations with RDMA while minimizing the resource contention within a computer node. In addition, SHMEMGraph synthesizes a number of optimizations to address both computation imbalance and communication imbalance. By using a graph of 1 billion edges, our evaluation shows that compared to the state-of-the-art Gemini framework, SHMEMGraph achieves an average improvement of 35.5% in terms of job completion time for five representative graph algorithms.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SHMEMGraph: Efficient and Balanced Graph Processing Using One-Sided Communication\",\"authors\":\"Huansong Fu, Manjunath Gorentla Venkata, Shaeke Salman, N. Imam, Weikuan Yu\",\"doi\":\"10.1109/CCGRID.2018.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art synchronous graph processing frameworks face both inefficiency and imbalance issues that cause their performance to be suboptimal. These issues include the inefficiency of communication and the imbalanced graph computation/communication costs in an iteration. We propose to replace their conventional two-sided communication model with the one-sided counterpart. Accordingly, we design SHMEMGraph, an efficient and balanced graph processing framework that is formulated across a global memory space and takes advantage of the flexibility and efficiency of one-sided communication for graph processing. Through an efficient one-sided communication channel, SHMEMGraph utilizes the high-performance operations with RDMA while minimizing the resource contention within a computer node. In addition, SHMEMGraph synthesizes a number of optimizations to address both computation imbalance and communication imbalance. By using a graph of 1 billion edges, our evaluation shows that compared to the state-of-the-art Gemini framework, SHMEMGraph achieves an average improvement of 35.5% in terms of job completion time for five representative graph algorithms.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHMEMGraph: Efficient and Balanced Graph Processing Using One-Sided Communication
State-of-the-art synchronous graph processing frameworks face both inefficiency and imbalance issues that cause their performance to be suboptimal. These issues include the inefficiency of communication and the imbalanced graph computation/communication costs in an iteration. We propose to replace their conventional two-sided communication model with the one-sided counterpart. Accordingly, we design SHMEMGraph, an efficient and balanced graph processing framework that is formulated across a global memory space and takes advantage of the flexibility and efficiency of one-sided communication for graph processing. Through an efficient one-sided communication channel, SHMEMGraph utilizes the high-performance operations with RDMA while minimizing the resource contention within a computer node. In addition, SHMEMGraph synthesizes a number of optimizations to address both computation imbalance and communication imbalance. By using a graph of 1 billion edges, our evaluation shows that compared to the state-of-the-art Gemini framework, SHMEMGraph achieves an average improvement of 35.5% in terms of job completion time for five representative graph algorithms.