基于RBF神经网络的熔体温度PID控制器

Jing Jiang, Sheng-ke Wen, Guoping Zhao
{"title":"基于RBF神经网络的熔体温度PID控制器","authors":"Jing Jiang, Sheng-ke Wen, Guoping Zhao","doi":"10.1109/CCCM.2008.141","DOIUrl":null,"url":null,"abstract":"Traditional melt temperature PID controllers have difficulties in PID parameter tuning. So, they suffer from low accuracy in temperature controlling and the dissatisfaction in high exactitude extrusion processing of the present PID controllers. A new kind of PID controller based on radial basis function (RBF) neural network is proposed. By using a sigmoid function to form the step size function, the proposed controller can not only obtain a higher accuracy in temperature controlling, but also infinitely approach the nonlinear system with lower computations, quicker convergence and more system stability. The simulation results show that the proposed PID controller has a better performance in the melt temperature controlling than other traditional PID controllers.","PeriodicalId":326534,"journal":{"name":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Melt Temperature PID Controller Based on RBF Neural Network\",\"authors\":\"Jing Jiang, Sheng-ke Wen, Guoping Zhao\",\"doi\":\"10.1109/CCCM.2008.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional melt temperature PID controllers have difficulties in PID parameter tuning. So, they suffer from low accuracy in temperature controlling and the dissatisfaction in high exactitude extrusion processing of the present PID controllers. A new kind of PID controller based on radial basis function (RBF) neural network is proposed. By using a sigmoid function to form the step size function, the proposed controller can not only obtain a higher accuracy in temperature controlling, but also infinitely approach the nonlinear system with lower computations, quicker convergence and more system stability. The simulation results show that the proposed PID controller has a better performance in the melt temperature controlling than other traditional PID controllers.\",\"PeriodicalId\":326534,\"journal\":{\"name\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCM.2008.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCM.2008.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的熔体温度PID控制器存在PID参数整定的困难。因此,现有的PID控制器存在温度控制精度不高、挤压加工精度不高的问题。提出了一种基于径向基函数(RBF)神经网络的PID控制器。该控制器采用s型函数构成步长函数,不仅可以获得较高的温度控制精度,而且可以无限逼近非线性系统,计算量少,收敛速度快,系统稳定性好。仿真结果表明,所提出的PID控制器在熔体温度控制方面具有比传统PID控制器更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Melt Temperature PID Controller Based on RBF Neural Network
Traditional melt temperature PID controllers have difficulties in PID parameter tuning. So, they suffer from low accuracy in temperature controlling and the dissatisfaction in high exactitude extrusion processing of the present PID controllers. A new kind of PID controller based on radial basis function (RBF) neural network is proposed. By using a sigmoid function to form the step size function, the proposed controller can not only obtain a higher accuracy in temperature controlling, but also infinitely approach the nonlinear system with lower computations, quicker convergence and more system stability. The simulation results show that the proposed PID controller has a better performance in the melt temperature controlling than other traditional PID controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analyze the Model of the Management System Based on Active Network Dynamic Test and Evaluating System for Flight Control System Analyzing the Impact of Organizational Constraints on Performance of E-Business: A Research Perspective D-Stable H8 Fault-Tolerant Control for Delta Operator Systems with Actuator Failure The Logistic Management for E-Commerce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1