{"title":"面向芯片上实验室应用的自供电液体体积传感器","authors":"Hao Wang, Tao Wang, Chengkuo Lee","doi":"10.1109/NEMS.2016.7758194","DOIUrl":null,"url":null,"abstract":"Technology for enabling drug delivery with precise control is strongly demanded by patients with diabetes or other chronic diseases. More intelligent functions such as drug loading and delivery in controllable manner without requiring electrical power will make low-cost drug delivery patches come true. One of the promising candidates is triboelectric technology which has been deployed as nanogenerators and self-powered glucose sensors recently. In this paper, the drug delivery is triggered by finger-pressing on a polymer based micropump. Considering that the finger-pressing should be an action of very low frequency, e.g., 1 to 2 Hz, triboelectric energy harvester (TEH) based on contact-separation mode between patterned biocompatible polymer layer and Aluminum (Al) film is integrated with microneedles on a flexible skin patch. Leveraging triboelectric materials and compatible fabrication technology, we successfully develop a self-powered flexible skin patch for transdermal insulin delivery with novel liquid volume sensor to monitor delivered drug volume.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered liquid volume sensor aiming at lab-on-chip applications\",\"authors\":\"Hao Wang, Tao Wang, Chengkuo Lee\",\"doi\":\"10.1109/NEMS.2016.7758194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology for enabling drug delivery with precise control is strongly demanded by patients with diabetes or other chronic diseases. More intelligent functions such as drug loading and delivery in controllable manner without requiring electrical power will make low-cost drug delivery patches come true. One of the promising candidates is triboelectric technology which has been deployed as nanogenerators and self-powered glucose sensors recently. In this paper, the drug delivery is triggered by finger-pressing on a polymer based micropump. Considering that the finger-pressing should be an action of very low frequency, e.g., 1 to 2 Hz, triboelectric energy harvester (TEH) based on contact-separation mode between patterned biocompatible polymer layer and Aluminum (Al) film is integrated with microneedles on a flexible skin patch. Leveraging triboelectric materials and compatible fabrication technology, we successfully develop a self-powered flexible skin patch for transdermal insulin delivery with novel liquid volume sensor to monitor delivered drug volume.\",\"PeriodicalId\":150449,\"journal\":{\"name\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2016.7758194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-powered liquid volume sensor aiming at lab-on-chip applications
Technology for enabling drug delivery with precise control is strongly demanded by patients with diabetes or other chronic diseases. More intelligent functions such as drug loading and delivery in controllable manner without requiring electrical power will make low-cost drug delivery patches come true. One of the promising candidates is triboelectric technology which has been deployed as nanogenerators and self-powered glucose sensors recently. In this paper, the drug delivery is triggered by finger-pressing on a polymer based micropump. Considering that the finger-pressing should be an action of very low frequency, e.g., 1 to 2 Hz, triboelectric energy harvester (TEH) based on contact-separation mode between patterned biocompatible polymer layer and Aluminum (Al) film is integrated with microneedles on a flexible skin patch. Leveraging triboelectric materials and compatible fabrication technology, we successfully develop a self-powered flexible skin patch for transdermal insulin delivery with novel liquid volume sensor to monitor delivered drug volume.