BART与目标平滑:患者特异性死产风险的分析

Jennifer Starling, Jared S. Murray, C. Carvalho, R. Bukowski, J. Scott
{"title":"BART与目标平滑:患者特异性死产风险的分析","authors":"Jennifer Starling, Jared S. Murray, C. Carvalho, R. Bukowski, J. Scott","doi":"10.1214/19-aoas1268","DOIUrl":null,"url":null,"abstract":"This article introduces BART with Targeted Smoothing, or tsBART, a new Bayesian tree-based model for nonparametric regression. The goal of tsBART is to introduce smoothness over a single target covariate t, while not necessarily requiring smoothness over other covariates x. TsBART is based on the Bayesian Additive Regression Trees (BART) model, an ensemble of regression trees. TsBART extends BART by parameterizing each tree's terminal nodes with smooth functions of t, rather than independent scalars. Like BART, tsBART captures complex nonlinear relationships and interactions among the predictors. But unlike BART, tsBART guarantees that the response surface will be smooth in the target covariate. This improves interpretability and helps regularize the estimate. \nAfter introducing and benchmarking the tsBART model, we apply it to our motivating example: pregnancy outcomes data from the National Center for Health Statistics. Our aim is to provide patient-specific estimates of stillbirth risk across gestational age (t), based on maternal and fetal risk factors (x). Obstetricians expect stillbirth risk to vary smoothly over gestational age, but not necessarily over other covariates, and tsBART has been designed precisely to reflect this structural knowledge. The results of our analysis show the clear superiority of the tsBART model for quantifying stillbirth risk, thereby providing patients and doctors with better information for managing the risk of perinatal mortality. All methods described here are implemented in the R package tsbart.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"BART with targeted smoothing: An analysis of patient-specific stillbirth risk\",\"authors\":\"Jennifer Starling, Jared S. Murray, C. Carvalho, R. Bukowski, J. Scott\",\"doi\":\"10.1214/19-aoas1268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces BART with Targeted Smoothing, or tsBART, a new Bayesian tree-based model for nonparametric regression. The goal of tsBART is to introduce smoothness over a single target covariate t, while not necessarily requiring smoothness over other covariates x. TsBART is based on the Bayesian Additive Regression Trees (BART) model, an ensemble of regression trees. TsBART extends BART by parameterizing each tree's terminal nodes with smooth functions of t, rather than independent scalars. Like BART, tsBART captures complex nonlinear relationships and interactions among the predictors. But unlike BART, tsBART guarantees that the response surface will be smooth in the target covariate. This improves interpretability and helps regularize the estimate. \\nAfter introducing and benchmarking the tsBART model, we apply it to our motivating example: pregnancy outcomes data from the National Center for Health Statistics. Our aim is to provide patient-specific estimates of stillbirth risk across gestational age (t), based on maternal and fetal risk factors (x). Obstetricians expect stillbirth risk to vary smoothly over gestational age, but not necessarily over other covariates, and tsBART has been designed precisely to reflect this structural knowledge. The results of our analysis show the clear superiority of the tsBART model for quantifying stillbirth risk, thereby providing patients and doctors with better information for managing the risk of perinatal mortality. All methods described here are implemented in the R package tsbart.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aoas1268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-aoas1268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文介绍了BART与目标平滑,或tsBART,一种新的基于贝叶斯树的非参数回归模型。tsBART的目标是在单个目标协变量t上引入平滑性,而不一定要求在其他协变量x上实现平滑。tsBART基于贝叶斯加性回归树(BART)模型,这是回归树的集合。TsBART通过使用t的光滑函数(而不是独立的标量)参数化每棵树的终端节点来扩展BART。与BART一样,tsBART捕获了预测因子之间复杂的非线性关系和相互作用。但与BART不同的是,tsBART保证响应面在目标协变量中是光滑的。这提高了可解释性,并有助于使估计规范化。在引入tsBART模型并对其进行基准测试后,我们将其应用于我们的激励示例:来自国家卫生统计中心的妊娠结局数据。我们的目的是根据产妇和胎儿的危险因素(x),提供患者对整个妊娠期死产风险的具体估计(t)。产科医生期望死产风险随妊娠期平稳变化,但不一定随其他协变量变化,tsBART的设计正是为了反映这一结构知识。我们的分析结果显示tsBART模型在量化死产风险方面具有明显的优势,从而为患者和医生提供更好的信息来管理围产期死亡风险。这里描述的所有方法都在R包tsbart中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BART with targeted smoothing: An analysis of patient-specific stillbirth risk
This article introduces BART with Targeted Smoothing, or tsBART, a new Bayesian tree-based model for nonparametric regression. The goal of tsBART is to introduce smoothness over a single target covariate t, while not necessarily requiring smoothness over other covariates x. TsBART is based on the Bayesian Additive Regression Trees (BART) model, an ensemble of regression trees. TsBART extends BART by parameterizing each tree's terminal nodes with smooth functions of t, rather than independent scalars. Like BART, tsBART captures complex nonlinear relationships and interactions among the predictors. But unlike BART, tsBART guarantees that the response surface will be smooth in the target covariate. This improves interpretability and helps regularize the estimate. After introducing and benchmarking the tsBART model, we apply it to our motivating example: pregnancy outcomes data from the National Center for Health Statistics. Our aim is to provide patient-specific estimates of stillbirth risk across gestational age (t), based on maternal and fetal risk factors (x). Obstetricians expect stillbirth risk to vary smoothly over gestational age, but not necessarily over other covariates, and tsBART has been designed precisely to reflect this structural knowledge. The results of our analysis show the clear superiority of the tsBART model for quantifying stillbirth risk, thereby providing patients and doctors with better information for managing the risk of perinatal mortality. All methods described here are implemented in the R package tsbart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1