基于卡尔曼滤波的摩托车纵向和横向状态估计

Luca Caiaffa, F. Maran, S. Peron, M. Bruschetta
{"title":"基于卡尔曼滤波的摩托车纵向和横向状态估计","authors":"Luca Caiaffa, F. Maran, S. Peron, M. Bruschetta","doi":"10.1109/MetroAutomotive57488.2023.10219133","DOIUrl":null,"url":null,"abstract":"Motorcycle safety systems rely on accurate state estimation of vehicle quantities. Systems like Traction Control (TC), Anti-lock braking system (ABS) and anti-wheelie (AW) are based on knowledge of vehicle states related to both longitudinal and lateral dynamics. In particular, cornering ABS and cornering TC relies on combined longitudinal and lateral dynamics. In this paper an accurate state and parameters estimator is presented, that can be used with standard sensor sets in commercial motorcycles. The estimator is based on a complex motorcycle dynamical model, with measurements coming from Inertial Measurement Unit (IMU) and wheel encoders. The estimator is based on an Unscented Kalman Filter and is tested in a realistic simulative scenario, under noisy sensors, model mismatches, and unknown initial conditions. The estimator is compared at the end with a simplified version.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motorcycle longitudinal and lateral state estimation via Kalman filtering\",\"authors\":\"Luca Caiaffa, F. Maran, S. Peron, M. Bruschetta\",\"doi\":\"10.1109/MetroAutomotive57488.2023.10219133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motorcycle safety systems rely on accurate state estimation of vehicle quantities. Systems like Traction Control (TC), Anti-lock braking system (ABS) and anti-wheelie (AW) are based on knowledge of vehicle states related to both longitudinal and lateral dynamics. In particular, cornering ABS and cornering TC relies on combined longitudinal and lateral dynamics. In this paper an accurate state and parameters estimator is presented, that can be used with standard sensor sets in commercial motorcycles. The estimator is based on a complex motorcycle dynamical model, with measurements coming from Inertial Measurement Unit (IMU) and wheel encoders. The estimator is based on an Unscented Kalman Filter and is tested in a realistic simulative scenario, under noisy sensors, model mismatches, and unknown initial conditions. The estimator is compared at the end with a simplified version.\",\"PeriodicalId\":115847,\"journal\":{\"name\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAutomotive57488.2023.10219133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摩托车安全系统依赖于对车辆数量的准确状态估计。诸如牵引力控制(TC)、防抱死制动系统(ABS)和防轮距(AW)等系统都是基于对车辆纵向和横向动态相关状态的了解。特别是,转弯ABS和转弯TC依赖于纵向和横向动力的结合。本文提出了一种精确的状态和参数估计器,可用于商用摩托车的标准传感器组。该估计器是基于一个复杂的摩托车动力学模型,测量来自惯性测量单元(IMU)和车轮编码器。该估计器基于无气味卡尔曼滤波器,并在真实的模拟场景中,在噪声传感器,模型不匹配和未知初始条件下进行了测试。最后,将该估计器与简化版本进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motorcycle longitudinal and lateral state estimation via Kalman filtering
Motorcycle safety systems rely on accurate state estimation of vehicle quantities. Systems like Traction Control (TC), Anti-lock braking system (ABS) and anti-wheelie (AW) are based on knowledge of vehicle states related to both longitudinal and lateral dynamics. In particular, cornering ABS and cornering TC relies on combined longitudinal and lateral dynamics. In this paper an accurate state and parameters estimator is presented, that can be used with standard sensor sets in commercial motorcycles. The estimator is based on a complex motorcycle dynamical model, with measurements coming from Inertial Measurement Unit (IMU) and wheel encoders. The estimator is based on an Unscented Kalman Filter and is tested in a realistic simulative scenario, under noisy sensors, model mismatches, and unknown initial conditions. The estimator is compared at the end with a simplified version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A strain-based estimation of tire-road forces through a supervised learning approach Anti-Interference Algorithm of Environment-Aware Millimeter Wave Radar An Adaptive TinyML Unsupervised Online Learning Algorithm for Driver Behavior Analysis Research on Automatic Calibration Method of Transmission Loss for Millimeter-Wave Radar Testing System in Intelligent Vehicle Exponential degradation model for Remaining Useful Life estimation of electrolytic capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1