一种基于特征频域分析的异步电动机故障检测算法

Zhaoxia Wang, C. S. Chang, Yifan Zhang
{"title":"一种基于特征频域分析的异步电动机故障检测算法","authors":"Zhaoxia Wang, C. S. Chang, Yifan Zhang","doi":"10.1109/ICIEA.2011.5975545","DOIUrl":null,"url":null,"abstract":"This paper studies the stator currents collected from several inverter-fed laboratory induction motors and proposes a new feature based frequency domain analysis method for performing the detection of induction motor faults, such as the broken rotor-bar or bearing fault. The mathematical formulation is presented to calculate the features, which are called FFT-ICA features in this paper. The obtained FFT-ICA features are normalized by using healthy motor as benchmarks to establish a feature database for fault detection. Compare with conventional frequency-domain analysis method, no prior knowledge of the motor parameters or other measurements are required for calculating features. Only one phase stator current waveforms are enough to provide consistent diagnosis of inverter-fed induction motors at different frequencies. The proposed method also outperforms our previous time domain analysis method.","PeriodicalId":304500,"journal":{"name":"2011 6th IEEE Conference on Industrial Electronics and Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A feature based frequency domain analysis algorithm for fault detection of induction motors\",\"authors\":\"Zhaoxia Wang, C. S. Chang, Yifan Zhang\",\"doi\":\"10.1109/ICIEA.2011.5975545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the stator currents collected from several inverter-fed laboratory induction motors and proposes a new feature based frequency domain analysis method for performing the detection of induction motor faults, such as the broken rotor-bar or bearing fault. The mathematical formulation is presented to calculate the features, which are called FFT-ICA features in this paper. The obtained FFT-ICA features are normalized by using healthy motor as benchmarks to establish a feature database for fault detection. Compare with conventional frequency-domain analysis method, no prior knowledge of the motor parameters or other measurements are required for calculating features. Only one phase stator current waveforms are enough to provide consistent diagnosis of inverter-fed induction motors at different frequencies. The proposed method also outperforms our previous time domain analysis method.\",\"PeriodicalId\":304500,\"journal\":{\"name\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2011.5975545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2011.5975545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了从几台变频实验室异步电动机采集的定子电流,提出了一种新的基于特征的频域分析方法来检测异步电动机的故障,如转子断条或轴承故障。给出了计算这些特征的数学公式,本文称之为FFT-ICA特征。以健康电机为基准,对得到的FFT-ICA特征进行归一化,建立故障检测特征库。与传统的频域分析方法相比,计算特征时不需要事先知道电机参数或其他测量数据。仅一相定子电流波形就足以对不同频率的变频感应电动机提供一致的诊断。该方法也优于我们以前的时域分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A feature based frequency domain analysis algorithm for fault detection of induction motors
This paper studies the stator currents collected from several inverter-fed laboratory induction motors and proposes a new feature based frequency domain analysis method for performing the detection of induction motor faults, such as the broken rotor-bar or bearing fault. The mathematical formulation is presented to calculate the features, which are called FFT-ICA features in this paper. The obtained FFT-ICA features are normalized by using healthy motor as benchmarks to establish a feature database for fault detection. Compare with conventional frequency-domain analysis method, no prior knowledge of the motor parameters or other measurements are required for calculating features. Only one phase stator current waveforms are enough to provide consistent diagnosis of inverter-fed induction motors at different frequencies. The proposed method also outperforms our previous time domain analysis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of soft-switching and frequency synchronization technologies in electromagnetic heater design Modified nearest neighbor fuzzy classification algorithm for ship target recognition The HPCXFGA method of main navigation performance and structure characteristic of the high-speed monohull inland ship Transformerless high step-up DC-DC converter with Cockcroft-Walton voltage multiplier Area efficient system-on-programmable-chip design for a wireless touch-triggered machining probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1