片上学习,低功耗概率尖峰神经网络与长期记忆

Hung-Yi Hsieh, K. Tang
{"title":"片上学习,低功耗概率尖峰神经网络与长期记忆","authors":"Hung-Yi Hsieh, K. Tang","doi":"10.1109/BioCAS.2013.6679626","DOIUrl":null,"url":null,"abstract":"This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An on-chip learning, low-power probabilistic spiking neural network with long-term memory\",\"authors\":\"Hung-Yi Hsieh, K. Tang\",\"doi\":\"10.1109/BioCAS.2013.6679626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种模拟概率尖峰神经网络(PSNN)电路,该电路适用于便携式和植入式应用,特别要求低功耗、小面积和片上学习,以确保良好的移动性、身体安全性和持续准确的分类。该电路采用台积电0.18μm CMOS技术实现。仿真结果表明,该电路可以在1V电源下学习线性不可分异或问题,功耗仅为3.8μW。长期的、多阶段的突触记忆在一个单一的突触中包含了更多的信息和更长的时间。并将所提出的PSNN与最近的硬件神经网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An on-chip learning, low-power probabilistic spiking neural network with long-term memory
This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1