基于神经网络的用户领域知识建模

Qiyang Chen, A. F. Norcio
{"title":"基于神经网络的用户领域知识建模","authors":"Qiyang Chen, A. F. Norcio","doi":"10.1207/s15327590ijhc0901_2","DOIUrl":null,"url":null,"abstract":"This article presents a neural network approach for user modeling. A set of neural networks is utilized to represent and infer users' task-related characteristics. These networks function as associative memories that can capture the causal relations among users' characteristics for the system adaptation. It is suggested that this approach can be expected to overcome some inherent problems of the conventional stereotyping approaches in terms of pattern recognition and classification of user characteristics.","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Modeling a User's Domain Knowledge With Neural Networks\",\"authors\":\"Qiyang Chen, A. F. Norcio\",\"doi\":\"10.1207/s15327590ijhc0901_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a neural network approach for user modeling. A set of neural networks is utilized to represent and infer users' task-related characteristics. These networks function as associative memories that can capture the causal relations among users' characteristics for the system adaptation. It is suggested that this approach can be expected to overcome some inherent problems of the conventional stereotyping approaches in terms of pattern recognition and classification of user characteristics.\",\"PeriodicalId\":208962,\"journal\":{\"name\":\"Int. J. Hum. Comput. Interact.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Hum. Comput. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1207/s15327590ijhc0901_2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1207/s15327590ijhc0901_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种用于用户建模的神经网络方法。利用一组神经网络来表示和推断用户的任务相关特征。这些网络具有联想记忆的功能,可以捕捉用户特征之间的因果关系,为系统适应提供依据。该方法有望在模式识别和用户特征分类方面克服传统定型方法的一些固有问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling a User's Domain Knowledge With Neural Networks
This article presents a neural network approach for user modeling. A set of neural networks is utilized to represent and infer users' task-related characteristics. These networks function as associative memories that can capture the causal relations among users' characteristics for the system adaptation. It is suggested that this approach can be expected to overcome some inherent problems of the conventional stereotyping approaches in terms of pattern recognition and classification of user characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usability Inspection by Metaphors of Human Thinking Compared to Heuristic Evaluation Templates for Search Queries: A User-Centered Feature for Improving Web Search Tools A Corporate Style Guide That Includes Domain Knowledge Identification of an Acceptable Mixture of Key and Speech Inputs in Bimodal Interfaces Decision Support for Indexing and Retrieval of Information in Hypertext Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1