{"title":"星载合成孔径雷达系统的多维波形编码","authors":"G. Krieger, N. Gebert, Alberto Moreira","doi":"10.1109/WDDC.2007.4339427","DOIUrl":null,"url":null,"abstract":"This paper introduces the innovative concept of multidimensional waveform encoding for spaceborne synthetic aperture radar (SAR). The combination of this technique with digital beamforming on receive enables a new generation of SAR systems with improved performance and flexible imaging capabilities. Examples are high-resolution wide-swath radar imaging with compact antennas, enhanced sensitivity for applications like along-track interferometry and moving object indication, or the implementation of hybrid SAR imaging modes which are well suited to satisfy hitherto incompatible user requirements. Implementation specific issues will be discussed and performance examples demonstrate the potential of the new technique for different remote sensing applications.","PeriodicalId":142822,"journal":{"name":"2007 International Waveform Diversity and Design Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multidimensional waveform encoding for spaceborne synthetic aperture radar systems\",\"authors\":\"G. Krieger, N. Gebert, Alberto Moreira\",\"doi\":\"10.1109/WDDC.2007.4339427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the innovative concept of multidimensional waveform encoding for spaceborne synthetic aperture radar (SAR). The combination of this technique with digital beamforming on receive enables a new generation of SAR systems with improved performance and flexible imaging capabilities. Examples are high-resolution wide-swath radar imaging with compact antennas, enhanced sensitivity for applications like along-track interferometry and moving object indication, or the implementation of hybrid SAR imaging modes which are well suited to satisfy hitherto incompatible user requirements. Implementation specific issues will be discussed and performance examples demonstrate the potential of the new technique for different remote sensing applications.\",\"PeriodicalId\":142822,\"journal\":{\"name\":\"2007 International Waveform Diversity and Design Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Waveform Diversity and Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDDC.2007.4339427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDDC.2007.4339427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multidimensional waveform encoding for spaceborne synthetic aperture radar systems
This paper introduces the innovative concept of multidimensional waveform encoding for spaceborne synthetic aperture radar (SAR). The combination of this technique with digital beamforming on receive enables a new generation of SAR systems with improved performance and flexible imaging capabilities. Examples are high-resolution wide-swath radar imaging with compact antennas, enhanced sensitivity for applications like along-track interferometry and moving object indication, or the implementation of hybrid SAR imaging modes which are well suited to satisfy hitherto incompatible user requirements. Implementation specific issues will be discussed and performance examples demonstrate the potential of the new technique for different remote sensing applications.