G. Hoff, R. Thomaz, L. I. Gutierres, Sven Muller, V. Fanti, E. Streck, R. Papaléo
{"title":"质子输运的一些GEANT4-DNA过程和模型的可靠性和比较:超薄层研究","authors":"G. Hoff, R. Thomaz, L. I. Gutierres, Sven Muller, V. Fanti, E. Streck, R. Papaléo","doi":"10.5772/INTECHOPEN.98753","DOIUrl":null,"url":null,"abstract":"This chapter presents a specific reliability study of some GEANT4-DNA (version 10.02.p01) processes and models for proton transportation considering ultra-thin layers (UTL). The Monte Carlo radiation transport validation is fundamental to guarantee the simulation results accuracy. However, sometimes this is impossible due to the lack of experimental data and, it is then that the reliability evaluation takes an important role. Geant4-DNA runs in an energy range that makes impossible, nowadays, to perform a proper microscopic validation (cross-sections and dynamic diffusion parameters) and allows very limited macroscopic reliability. The chemical damage cross-sections reliability (experiment versus simulation) is a way to verify the consistency of the simulation results which is presented for 2 MeV incident protons beam on PMMA and PVC UTL. A comparison among different Geant4-DNA physics lists for incident protons beams from 2 to 20 MeV, interacting with homogeneous water UTL (2 to 200 nm) was performed. This comparison was evaluated for standard and five other optional physics lists considering radial and depth profiles of deposited energy as well as number of interactions and stopping power of the incident particle.","PeriodicalId":308418,"journal":{"name":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability and Comparison of Some GEANT4-DNA Processes and Models for Proton Transportation: An Ultra-Thin Layer Study\",\"authors\":\"G. Hoff, R. Thomaz, L. I. Gutierres, Sven Muller, V. Fanti, E. Streck, R. Papaléo\",\"doi\":\"10.5772/INTECHOPEN.98753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter presents a specific reliability study of some GEANT4-DNA (version 10.02.p01) processes and models for proton transportation considering ultra-thin layers (UTL). The Monte Carlo radiation transport validation is fundamental to guarantee the simulation results accuracy. However, sometimes this is impossible due to the lack of experimental data and, it is then that the reliability evaluation takes an important role. Geant4-DNA runs in an energy range that makes impossible, nowadays, to perform a proper microscopic validation (cross-sections and dynamic diffusion parameters) and allows very limited macroscopic reliability. The chemical damage cross-sections reliability (experiment versus simulation) is a way to verify the consistency of the simulation results which is presented for 2 MeV incident protons beam on PMMA and PVC UTL. A comparison among different Geant4-DNA physics lists for incident protons beams from 2 to 20 MeV, interacting with homogeneous water UTL (2 to 200 nm) was performed. This comparison was evaluated for standard and five other optional physics lists considering radial and depth profiles of deposited energy as well as number of interactions and stopping power of the incident particle.\",\"PeriodicalId\":308418,\"journal\":{\"name\":\"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.98753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.98753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability and Comparison of Some GEANT4-DNA Processes and Models for Proton Transportation: An Ultra-Thin Layer Study
This chapter presents a specific reliability study of some GEANT4-DNA (version 10.02.p01) processes and models for proton transportation considering ultra-thin layers (UTL). The Monte Carlo radiation transport validation is fundamental to guarantee the simulation results accuracy. However, sometimes this is impossible due to the lack of experimental data and, it is then that the reliability evaluation takes an important role. Geant4-DNA runs in an energy range that makes impossible, nowadays, to perform a proper microscopic validation (cross-sections and dynamic diffusion parameters) and allows very limited macroscopic reliability. The chemical damage cross-sections reliability (experiment versus simulation) is a way to verify the consistency of the simulation results which is presented for 2 MeV incident protons beam on PMMA and PVC UTL. A comparison among different Geant4-DNA physics lists for incident protons beams from 2 to 20 MeV, interacting with homogeneous water UTL (2 to 200 nm) was performed. This comparison was evaluated for standard and five other optional physics lists considering radial and depth profiles of deposited energy as well as number of interactions and stopping power of the incident particle.