{"title":"建模索赔之间的相互作用,以验证多个索赔","authors":"Shuai Wang, W. Mao","doi":"10.1145/3459637.3482144","DOIUrl":null,"url":null,"abstract":"To inhibit the spread of rumorous information, fact checking aims at retrieving evidence to verify the truthfulness of a given statement. Fact checking methods typically use knowledge graphs (KGs) as external repositories and develop reasoning methods to retrieve evidence from KGs. As real-world statement is often complex and contains multiple claims, multi-claim fact verification is not only necessary but more important for practical applications. However, existing methods only focus on verifying a single claim (i.e. a single-claim statement). Multiple claims imply rich context information and modeling the interrelations between claims can facilitate better verification of a multi-claim statement as a whole. In this paper, we propose a computational method to model inter-claim interactions for multi-claim fact checking. To focus on relevant claims within a statement, our method first extracts topics from the statement and connects the triple claims in the statement to form a claim graph. It then learns a policy-based agent to sequentially select topic-related triples from the claim graph. To fully exploit information from the statement, our method further employs multiple agents and develops a hierarchical attention mechanism to verify multiple claims as a whole. Experimental results on two real-world datasets show the effectiveness of our method for multi-claim fact verification.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Inter-Claim Interactions for Verifying Multiple Claims\",\"authors\":\"Shuai Wang, W. Mao\",\"doi\":\"10.1145/3459637.3482144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To inhibit the spread of rumorous information, fact checking aims at retrieving evidence to verify the truthfulness of a given statement. Fact checking methods typically use knowledge graphs (KGs) as external repositories and develop reasoning methods to retrieve evidence from KGs. As real-world statement is often complex and contains multiple claims, multi-claim fact verification is not only necessary but more important for practical applications. However, existing methods only focus on verifying a single claim (i.e. a single-claim statement). Multiple claims imply rich context information and modeling the interrelations between claims can facilitate better verification of a multi-claim statement as a whole. In this paper, we propose a computational method to model inter-claim interactions for multi-claim fact checking. To focus on relevant claims within a statement, our method first extracts topics from the statement and connects the triple claims in the statement to form a claim graph. It then learns a policy-based agent to sequentially select topic-related triples from the claim graph. To fully exploit information from the statement, our method further employs multiple agents and develops a hierarchical attention mechanism to verify multiple claims as a whole. Experimental results on two real-world datasets show the effectiveness of our method for multi-claim fact verification.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Inter-Claim Interactions for Verifying Multiple Claims
To inhibit the spread of rumorous information, fact checking aims at retrieving evidence to verify the truthfulness of a given statement. Fact checking methods typically use knowledge graphs (KGs) as external repositories and develop reasoning methods to retrieve evidence from KGs. As real-world statement is often complex and contains multiple claims, multi-claim fact verification is not only necessary but more important for practical applications. However, existing methods only focus on verifying a single claim (i.e. a single-claim statement). Multiple claims imply rich context information and modeling the interrelations between claims can facilitate better verification of a multi-claim statement as a whole. In this paper, we propose a computational method to model inter-claim interactions for multi-claim fact checking. To focus on relevant claims within a statement, our method first extracts topics from the statement and connects the triple claims in the statement to form a claim graph. It then learns a policy-based agent to sequentially select topic-related triples from the claim graph. To fully exploit information from the statement, our method further employs multiple agents and develops a hierarchical attention mechanism to verify multiple claims as a whole. Experimental results on two real-world datasets show the effectiveness of our method for multi-claim fact verification.