群机器人避障的分布式遗传算法

Nesma M. Rezk, Y. Alkabani, H.S. Bedor, S. Hammad
{"title":"群机器人避障的分布式遗传算法","authors":"Nesma M. Rezk, Y. Alkabani, H.S. Bedor, S. Hammad","doi":"10.1109/ICCES.2014.7030951","DOIUrl":null,"url":null,"abstract":"Obstacle avoidance is an extremely important task in swarm robotics as it saves robots from hitting objects and being damaged. A Genetic algorithm can be used to teach robots how to avoid obstacles in different environments. However the evaluation module of this genetic algorithm can be very time consuming module as each candidate solution should be evaluated N times. This paper explains the methodology used to distribute the evaluation module of genetic Algorithm over a cluster of computers to speed up the algorithm. The proposed methodology can be used for any application which suffers from time consuming evaluation module. Experimental results showed that the speedup can reach 70x.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A distributed genetic algorithm for swarm robots obstacle avoidance\",\"authors\":\"Nesma M. Rezk, Y. Alkabani, H.S. Bedor, S. Hammad\",\"doi\":\"10.1109/ICCES.2014.7030951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacle avoidance is an extremely important task in swarm robotics as it saves robots from hitting objects and being damaged. A Genetic algorithm can be used to teach robots how to avoid obstacles in different environments. However the evaluation module of this genetic algorithm can be very time consuming module as each candidate solution should be evaluated N times. This paper explains the methodology used to distribute the evaluation module of genetic Algorithm over a cluster of computers to speed up the algorithm. The proposed methodology can be used for any application which suffers from time consuming evaluation module. Experimental results showed that the speedup can reach 70x.\",\"PeriodicalId\":339697,\"journal\":{\"name\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2014.7030951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

避障是群体机器人技术中一项极其重要的任务,它可以避免机器人撞到物体而被损坏。遗传算法可以用来教机器人如何在不同的环境中避开障碍物。然而,该遗传算法的求值模块是一个非常耗时的模块,因为每个候选解需要求N次。本文阐述了将遗传算法的评估模块分布在一组计算机上以提高算法速度的方法。该方法可用于任何存在耗时评估模块的应用程序。实验结果表明,该方法的加速速度可达70倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distributed genetic algorithm for swarm robots obstacle avoidance
Obstacle avoidance is an extremely important task in swarm robotics as it saves robots from hitting objects and being damaged. A Genetic algorithm can be used to teach robots how to avoid obstacles in different environments. However the evaluation module of this genetic algorithm can be very time consuming module as each candidate solution should be evaluated N times. This paper explains the methodology used to distribute the evaluation module of genetic Algorithm over a cluster of computers to speed up the algorithm. The proposed methodology can be used for any application which suffers from time consuming evaluation module. Experimental results showed that the speedup can reach 70x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations and performance evaluation of Real-Time Multi-core Systems An Enhanced Queries Scheduler for query processing over a cloud environment EMD thresholding and denoising inspired by wavelet technique A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base A proposed framework for robust face identification system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1