Rijalul Fikri, Aswin Mushardiyanto, Mochamad Naufal Laudza’Banin, Kristiana Maureen, Harry Patria
{"title":"根据2020年的贫困信息,印尼区域划分城市使用了k -手段分析方法","authors":"Rijalul Fikri, Aswin Mushardiyanto, Mochamad Naufal Laudza’Banin, Kristiana Maureen, Harry Patria","doi":"10.28932/sentekmi2021.v1i1.76","DOIUrl":null,"url":null,"abstract":"Berdasarkan dataset tentang informasi kemiskinan kabupaten/kota tahun 2020 yang dikeluarkan oleh Badan Pusat Statistik Indonesia, dipilih variabel bebas sebanyak dua puluh variabel yang digunakan dalam penelitian ini. Kemudian dilakukan uji korelasi antar variabel bebas tersebut dan diketahui terdapat variabel yang berkorelasi dikategorikan berkorelasi sangat tinggi, dengan nilai korelasi sebesar 0,921 (Persentase Penduduk Miskin - P1 (Poverty Gap Index)) dan 0,964 (P1 (Poverty Gap Index) - P2 (Proverty Severity Index)). Variabel yang memiliki korelasi sangat tinggi jika digunakan akan menyebabkan terjadinya multikolinearitas, sehingga opsi untuk menghilangkan multikolinearitas adalah dengan menggunakan Principal Component Analysis (PCA). Dengan menggunakan Proporsi Kumulatif Varians dan minimum persentase keragaman data sebesar 80% maka didapatkan output berupa dimensi data baru PCA sebanyak tiga dimensi data atau tiga variabel bebas baru. Dengan menggunakan variabel input baru berupa PCA 0, PCA 1 dan PCA 2 dilakukanlah penentuan jumlah cluster dengan metode Silhouette Coefficient dan analisa clustering menggunakan metode K-Means didapatkanlah empat kelompok/cluster, dengan jumlah anggota cluster 1 sebanyak 117 Kabupaten/Kota, cluster 2 sebanyak 154 Kabupaten/Kota, cluster 3 sebanyak 173 Kabupaten/Kota dan cluster 4 sebanyak 70 Kabupaten/Kota.","PeriodicalId":342850,"journal":{"name":"Seminar Nasional Teknik dan Manajemen Industri","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pengelompokan Kabupaten/Kota di Indonesia Berdasarkan Informasi Kemiskinan Tahun 2020 Menggunakan Metode K-Means Clustering Analysis\",\"authors\":\"Rijalul Fikri, Aswin Mushardiyanto, Mochamad Naufal Laudza’Banin, Kristiana Maureen, Harry Patria\",\"doi\":\"10.28932/sentekmi2021.v1i1.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Berdasarkan dataset tentang informasi kemiskinan kabupaten/kota tahun 2020 yang dikeluarkan oleh Badan Pusat Statistik Indonesia, dipilih variabel bebas sebanyak dua puluh variabel yang digunakan dalam penelitian ini. Kemudian dilakukan uji korelasi antar variabel bebas tersebut dan diketahui terdapat variabel yang berkorelasi dikategorikan berkorelasi sangat tinggi, dengan nilai korelasi sebesar 0,921 (Persentase Penduduk Miskin - P1 (Poverty Gap Index)) dan 0,964 (P1 (Poverty Gap Index) - P2 (Proverty Severity Index)). Variabel yang memiliki korelasi sangat tinggi jika digunakan akan menyebabkan terjadinya multikolinearitas, sehingga opsi untuk menghilangkan multikolinearitas adalah dengan menggunakan Principal Component Analysis (PCA). Dengan menggunakan Proporsi Kumulatif Varians dan minimum persentase keragaman data sebesar 80% maka didapatkan output berupa dimensi data baru PCA sebanyak tiga dimensi data atau tiga variabel bebas baru. Dengan menggunakan variabel input baru berupa PCA 0, PCA 1 dan PCA 2 dilakukanlah penentuan jumlah cluster dengan metode Silhouette Coefficient dan analisa clustering menggunakan metode K-Means didapatkanlah empat kelompok/cluster, dengan jumlah anggota cluster 1 sebanyak 117 Kabupaten/Kota, cluster 2 sebanyak 154 Kabupaten/Kota, cluster 3 sebanyak 173 Kabupaten/Kota dan cluster 4 sebanyak 70 Kabupaten/Kota.\",\"PeriodicalId\":342850,\"journal\":{\"name\":\"Seminar Nasional Teknik dan Manajemen Industri\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminar Nasional Teknik dan Manajemen Industri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28932/sentekmi2021.v1i1.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminar Nasional Teknik dan Manajemen Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28932/sentekmi2021.v1i1.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
根据印度尼西亚统计局发布的2020年地区/城市贫困信息的数据,选择了本研究中使用的20个变量的自由变量。然后对自由变量之间的相关性进行测试,这些变量被认为非常高,其相关性值为0.921(贫困人口百分比- P1 (Poverty Gap Index)和0.964 (P1) (pverty Gap Index)。如果使用,具有相关性的变量非常高,它们会导致多角整理,所以消除多角分析的选项是使用主方程分析(PCA)。通过使用变量的累积比例和数据多样性的最小百分比为80%,就会获得新的PCA数据维度为三维数据或三个新的自由变量。输入变量用PCA PCA PCA 0、1和2的新定位dilakukanlah侧影Coefficient和聚类分析方法使用集群的数量方法K-Means didapatkanlah四组1 -集群,集群成员的数量多达117 - 2,城市集群多达154个县县城市,三县共有173 -星系团和四县多达70 -城市星团。
Pengelompokan Kabupaten/Kota di Indonesia Berdasarkan Informasi Kemiskinan Tahun 2020 Menggunakan Metode K-Means Clustering Analysis
Berdasarkan dataset tentang informasi kemiskinan kabupaten/kota tahun 2020 yang dikeluarkan oleh Badan Pusat Statistik Indonesia, dipilih variabel bebas sebanyak dua puluh variabel yang digunakan dalam penelitian ini. Kemudian dilakukan uji korelasi antar variabel bebas tersebut dan diketahui terdapat variabel yang berkorelasi dikategorikan berkorelasi sangat tinggi, dengan nilai korelasi sebesar 0,921 (Persentase Penduduk Miskin - P1 (Poverty Gap Index)) dan 0,964 (P1 (Poverty Gap Index) - P2 (Proverty Severity Index)). Variabel yang memiliki korelasi sangat tinggi jika digunakan akan menyebabkan terjadinya multikolinearitas, sehingga opsi untuk menghilangkan multikolinearitas adalah dengan menggunakan Principal Component Analysis (PCA). Dengan menggunakan Proporsi Kumulatif Varians dan minimum persentase keragaman data sebesar 80% maka didapatkan output berupa dimensi data baru PCA sebanyak tiga dimensi data atau tiga variabel bebas baru. Dengan menggunakan variabel input baru berupa PCA 0, PCA 1 dan PCA 2 dilakukanlah penentuan jumlah cluster dengan metode Silhouette Coefficient dan analisa clustering menggunakan metode K-Means didapatkanlah empat kelompok/cluster, dengan jumlah anggota cluster 1 sebanyak 117 Kabupaten/Kota, cluster 2 sebanyak 154 Kabupaten/Kota, cluster 3 sebanyak 173 Kabupaten/Kota dan cluster 4 sebanyak 70 Kabupaten/Kota.