Chia-Lung Lin, Rong-Jie Liu, Chih-Lung Chen, Hsie-Chia Chang, Chen-Yi Lee
{"title":"一种7.72 Gb/s LDPC-CC解码器,具有重叠架构,用于pre-5G无线通信","authors":"Chia-Lung Lin, Rong-Jie Liu, Chih-Lung Chen, Hsie-Chia Chang, Chen-Yi Lee","doi":"10.1109/ASSCC.2016.7844204","DOIUrl":null,"url":null,"abstract":"LDPC block codes (LDPC-BCs) have attracted great interests in recent years by highly parallel computation and good bit-error-rate performance, and one of the decoder implementation issues is high routing complexity. LDPC convolutional codes (LDPC-CCs) not only release routing complexity but also are natural to dynamic length of data frame. Thus, the codes are very suitable for video stream and pre-5G wireless communication systems. LDPC-CC decoder is composed of several concatenated processors, where the long FIFOs are usually the bottleneck of area and decoding latency. To improve hardware efficiency, we use overlapped architecture to share partial FIFO between processors. Furthermore, check node unit and hybrid-partitioned FIFO are proposed to increase throughput and pipeline efficiency. The measurement results of test chip in 65nm technology show that our work can achieves 7.72 Gb/s under 322MHz operating frequency. The decoder with 6 processors occupies an area of 1.19 mm2, drawing 410.5 mW of power with an energy efficiency of 8.75pJ/bit/proc.","PeriodicalId":278002,"journal":{"name":"2016 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 7.72 Gb/s LDPC-CC decoder with overlapped architecture for pre-5G wireless communications\",\"authors\":\"Chia-Lung Lin, Rong-Jie Liu, Chih-Lung Chen, Hsie-Chia Chang, Chen-Yi Lee\",\"doi\":\"10.1109/ASSCC.2016.7844204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LDPC block codes (LDPC-BCs) have attracted great interests in recent years by highly parallel computation and good bit-error-rate performance, and one of the decoder implementation issues is high routing complexity. LDPC convolutional codes (LDPC-CCs) not only release routing complexity but also are natural to dynamic length of data frame. Thus, the codes are very suitable for video stream and pre-5G wireless communication systems. LDPC-CC decoder is composed of several concatenated processors, where the long FIFOs are usually the bottleneck of area and decoding latency. To improve hardware efficiency, we use overlapped architecture to share partial FIFO between processors. Furthermore, check node unit and hybrid-partitioned FIFO are proposed to increase throughput and pipeline efficiency. The measurement results of test chip in 65nm technology show that our work can achieves 7.72 Gb/s under 322MHz operating frequency. The decoder with 6 processors occupies an area of 1.19 mm2, drawing 410.5 mW of power with an energy efficiency of 8.75pJ/bit/proc.\",\"PeriodicalId\":278002,\"journal\":{\"name\":\"2016 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2016.7844204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2016.7844204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 7.72 Gb/s LDPC-CC decoder with overlapped architecture for pre-5G wireless communications
LDPC block codes (LDPC-BCs) have attracted great interests in recent years by highly parallel computation and good bit-error-rate performance, and one of the decoder implementation issues is high routing complexity. LDPC convolutional codes (LDPC-CCs) not only release routing complexity but also are natural to dynamic length of data frame. Thus, the codes are very suitable for video stream and pre-5G wireless communication systems. LDPC-CC decoder is composed of several concatenated processors, where the long FIFOs are usually the bottleneck of area and decoding latency. To improve hardware efficiency, we use overlapped architecture to share partial FIFO between processors. Furthermore, check node unit and hybrid-partitioned FIFO are proposed to increase throughput and pipeline efficiency. The measurement results of test chip in 65nm technology show that our work can achieves 7.72 Gb/s under 322MHz operating frequency. The decoder with 6 processors occupies an area of 1.19 mm2, drawing 410.5 mW of power with an energy efficiency of 8.75pJ/bit/proc.