Tara Prasanna Dash, S. Das, S. Dey, E. Mohapatra, J. Jena, C. K. Maiti
{"title":"三栅极finfet的SPICE参数提取——一种集成方法","authors":"Tara Prasanna Dash, S. Das, S. Dey, E. Mohapatra, J. Jena, C. K. Maiti","doi":"10.1109/DEVIC.2019.8783725","DOIUrl":null,"url":null,"abstract":"The FinFET transistor is now considered the most probable successor of the bulk MOSFET transistor in the global race for miniaturization in the field of micro- and nanoelectronics. The development of integrated circuits using FinFETs is made possible only by the use of their compact models. These models must predict precisely the electrical behavior of these devices advanced technologies. In this work, we show an integrated approach for SPICE parameter extraction explicitly for nanoscale FinFETs, which is validated by comparisons with simulation results. We discuss in detail the platform necessary for the development of the model and automated SPICE parameter extraction. The predictive capability of TCAD to estimate the SPICE model parameters from process-based on the physical variations of process parameters has been examined.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPICE Parameter Extraction of Tri-Gate FinFETs-An Integrated Approach\",\"authors\":\"Tara Prasanna Dash, S. Das, S. Dey, E. Mohapatra, J. Jena, C. K. Maiti\",\"doi\":\"10.1109/DEVIC.2019.8783725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FinFET transistor is now considered the most probable successor of the bulk MOSFET transistor in the global race for miniaturization in the field of micro- and nanoelectronics. The development of integrated circuits using FinFETs is made possible only by the use of their compact models. These models must predict precisely the electrical behavior of these devices advanced technologies. In this work, we show an integrated approach for SPICE parameter extraction explicitly for nanoscale FinFETs, which is validated by comparisons with simulation results. We discuss in detail the platform necessary for the development of the model and automated SPICE parameter extraction. The predictive capability of TCAD to estimate the SPICE model parameters from process-based on the physical variations of process parameters has been examined.\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SPICE Parameter Extraction of Tri-Gate FinFETs-An Integrated Approach
The FinFET transistor is now considered the most probable successor of the bulk MOSFET transistor in the global race for miniaturization in the field of micro- and nanoelectronics. The development of integrated circuits using FinFETs is made possible only by the use of their compact models. These models must predict precisely the electrical behavior of these devices advanced technologies. In this work, we show an integrated approach for SPICE parameter extraction explicitly for nanoscale FinFETs, which is validated by comparisons with simulation results. We discuss in detail the platform necessary for the development of the model and automated SPICE parameter extraction. The predictive capability of TCAD to estimate the SPICE model parameters from process-based on the physical variations of process parameters has been examined.