商品期货波动的均值回归:基于日波动区间的随机波动模型分析

Stephen Figlewski, Marco Haase, M. Huss, H. Zimmermann
{"title":"商品期货波动的均值回归:基于日波动区间的随机波动模型分析","authors":"Stephen Figlewski, Marco Haase, M. Huss, H. Zimmermann","doi":"10.2139/ssrn.3825894","DOIUrl":null,"url":null,"abstract":"We analyse the dynamic behavior of conditional volatility in commodity markets using a novel, manually collected dataset of daily price ranges over a time span of more than 140 years, which allows more precise daily volatility estimates than are otherwise prevalent in the commodity literature. We find that a one-factor range-based EGARCH-model (REGARCH) is not adequate to capture the very distinct long-run and short-run dynamic volatility components. While the long memory effect of volatility is numerically very small, it strongly affects the parameters of the short-run dynamics which become more stable and plausible in size. Moreover, long-run persistency in volatility shocks is practically unaffected after controlling for regimes which indicates that the stochastic movement of the long-run mean is not a statistical artefact. We also find that consistent with the theory of storage, long run volatility is positively related to lagged returns. Thus, asymmetry in volatility is not a short-run phenomenon.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean-Reversion in Commodity Futures Volatility: An Analysis of Daily Range-Based Stochastic Volatility Models\",\"authors\":\"Stephen Figlewski, Marco Haase, M. Huss, H. Zimmermann\",\"doi\":\"10.2139/ssrn.3825894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the dynamic behavior of conditional volatility in commodity markets using a novel, manually collected dataset of daily price ranges over a time span of more than 140 years, which allows more precise daily volatility estimates than are otherwise prevalent in the commodity literature. We find that a one-factor range-based EGARCH-model (REGARCH) is not adequate to capture the very distinct long-run and short-run dynamic volatility components. While the long memory effect of volatility is numerically very small, it strongly affects the parameters of the short-run dynamics which become more stable and plausible in size. Moreover, long-run persistency in volatility shocks is practically unaffected after controlling for regimes which indicates that the stochastic movement of the long-run mean is not a statistical artefact. We also find that consistent with the theory of storage, long run volatility is positively related to lagged returns. Thus, asymmetry in volatility is not a short-run phenomenon.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3825894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3825894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了商品市场条件波动的动态行为,使用了一个新的、人工收集的超过140年时间跨度的每日价格范围数据集,这使得每日波动率的估计比商品文献中普遍存在的更精确。我们发现基于单因素区间的egarch模型(REGARCH)不足以捕捉非常明显的长期和短期动态波动成分。虽然波动率的长期记忆效应在数值上非常小,但它强烈地影响短期动力学的参数,这些参数在大小上变得更加稳定和可信。此外,波动性冲击的长期持续性在控制制度后实际上不受影响,这表明长期均值的随机运动不是统计人工制品。我们还发现,与存储理论一致,长期波动率与滞后收益呈正相关。因此,波动性的不对称不是一种短期现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mean-Reversion in Commodity Futures Volatility: An Analysis of Daily Range-Based Stochastic Volatility Models
We analyse the dynamic behavior of conditional volatility in commodity markets using a novel, manually collected dataset of daily price ranges over a time span of more than 140 years, which allows more precise daily volatility estimates than are otherwise prevalent in the commodity literature. We find that a one-factor range-based EGARCH-model (REGARCH) is not adequate to capture the very distinct long-run and short-run dynamic volatility components. While the long memory effect of volatility is numerically very small, it strongly affects the parameters of the short-run dynamics which become more stable and plausible in size. Moreover, long-run persistency in volatility shocks is practically unaffected after controlling for regimes which indicates that the stochastic movement of the long-run mean is not a statistical artefact. We also find that consistent with the theory of storage, long run volatility is positively related to lagged returns. Thus, asymmetry in volatility is not a short-run phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XVA Estimates with Empirical Martingale Simulation Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting? Sensitivities-Based Method and Expected Shortfall for Market Risk Under FRTB and Its Impact on Options Risk Capital A 2-Factor model for inclusion of Voluntary Termination Risk in Automotive Retail Loan Portfolios Lessons from Estimating the Average Option-implied Volatility Term Structure for the Spanish Banking Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1