{"title":"土壤的权力?微生物燃料电池能否为非平凡传感器供电?","authors":"Gabriela Marcano, P. Pannuto","doi":"10.1145/3477085.3478989","DOIUrl":null,"url":null,"abstract":"This paper explores the power delivery potential of soil-based microbial fuel cells. We build a prototype energy harvesting setup for a soil microbial fuel cell, measure the amount of power that we can harvest, and use that energy to drive an e-ink display as a representative example of a periodic energy-intensive load. Microbial fuel cells are highly sensitive to environmental conditions, especially soil moisture. In near-optimal, super moist conditions our cell provides approximately 100 μW of power at around 500 mV, which is ample power over time to power our system several times a day. We further explore how cell performance diminishes and recovers with varying moisture levels as well as how cell performance is affected by the load from the energy harvester itself. In sum, we find that the confluence of ever lower-power electronics and new understanding of microbial fuel cell design means that \"soil-powered sensors\" are now feasible. There remains, however, significant future work to make these systems reliable and maximally performant.","PeriodicalId":422035,"journal":{"name":"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Soil Power?: Can Microbial Fuel Cells Power Non-Trivial Sensors?\",\"authors\":\"Gabriela Marcano, P. Pannuto\",\"doi\":\"10.1145/3477085.3478989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the power delivery potential of soil-based microbial fuel cells. We build a prototype energy harvesting setup for a soil microbial fuel cell, measure the amount of power that we can harvest, and use that energy to drive an e-ink display as a representative example of a periodic energy-intensive load. Microbial fuel cells are highly sensitive to environmental conditions, especially soil moisture. In near-optimal, super moist conditions our cell provides approximately 100 μW of power at around 500 mV, which is ample power over time to power our system several times a day. We further explore how cell performance diminishes and recovers with varying moisture levels as well as how cell performance is affected by the load from the energy harvester itself. In sum, we find that the confluence of ever lower-power electronics and new understanding of microbial fuel cell design means that \\\"soil-powered sensors\\\" are now feasible. There remains, however, significant future work to make these systems reliable and maximally performant.\",\"PeriodicalId\":422035,\"journal\":{\"name\":\"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477085.3478989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477085.3478989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soil Power?: Can Microbial Fuel Cells Power Non-Trivial Sensors?
This paper explores the power delivery potential of soil-based microbial fuel cells. We build a prototype energy harvesting setup for a soil microbial fuel cell, measure the amount of power that we can harvest, and use that energy to drive an e-ink display as a representative example of a periodic energy-intensive load. Microbial fuel cells are highly sensitive to environmental conditions, especially soil moisture. In near-optimal, super moist conditions our cell provides approximately 100 μW of power at around 500 mV, which is ample power over time to power our system several times a day. We further explore how cell performance diminishes and recovers with varying moisture levels as well as how cell performance is affected by the load from the energy harvester itself. In sum, we find that the confluence of ever lower-power electronics and new understanding of microbial fuel cell design means that "soil-powered sensors" are now feasible. There remains, however, significant future work to make these systems reliable and maximally performant.