{"title":"多分辨率球体包装树:分层多分辨率三维数据结构","authors":"Jiro Inoue, A. J. Stewart","doi":"10.1145/1364901.1364954","DOIUrl":null,"url":null,"abstract":"Sphere packing arrangements are frequently found in nature, exhibiting efficient space-filling and energy minimization properties. Close sphere packings provide a tight, uniform, and highly symmetric spatial sampling at a single resolution. We introduce the Multiresolution Sphere Packing Tree (MSP-tree): a hierarchical spatial data structure based on sphere packing arrangements suitable for 3D space representation and selective refinement. Compared to the commonly used octree, MSP-tree offers three advantages: a lower fanout (a factor of four compared to eight), denser packing (about 24% denser), and persistence (sphere centers at coarse resolutions persist at finer resolutions). We present MSP-tree both as a region-based approach that describes the refinement mechanism succintly and intuitively, and as a lattice-based approach better suited for implementation. The MSP-tree offers a robust, highly symmetric tessellation of 3D space with favorable image processing properties.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiresolution sphere packing tree: a hierarchical multiresolution 3D data structure\",\"authors\":\"Jiro Inoue, A. J. Stewart\",\"doi\":\"10.1145/1364901.1364954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sphere packing arrangements are frequently found in nature, exhibiting efficient space-filling and energy minimization properties. Close sphere packings provide a tight, uniform, and highly symmetric spatial sampling at a single resolution. We introduce the Multiresolution Sphere Packing Tree (MSP-tree): a hierarchical spatial data structure based on sphere packing arrangements suitable for 3D space representation and selective refinement. Compared to the commonly used octree, MSP-tree offers three advantages: a lower fanout (a factor of four compared to eight), denser packing (about 24% denser), and persistence (sphere centers at coarse resolutions persist at finer resolutions). We present MSP-tree both as a region-based approach that describes the refinement mechanism succintly and intuitively, and as a lattice-based approach better suited for implementation. The MSP-tree offers a robust, highly symmetric tessellation of 3D space with favorable image processing properties.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1364901.1364954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiresolution sphere packing tree: a hierarchical multiresolution 3D data structure
Sphere packing arrangements are frequently found in nature, exhibiting efficient space-filling and energy minimization properties. Close sphere packings provide a tight, uniform, and highly symmetric spatial sampling at a single resolution. We introduce the Multiresolution Sphere Packing Tree (MSP-tree): a hierarchical spatial data structure based on sphere packing arrangements suitable for 3D space representation and selective refinement. Compared to the commonly used octree, MSP-tree offers three advantages: a lower fanout (a factor of four compared to eight), denser packing (about 24% denser), and persistence (sphere centers at coarse resolutions persist at finer resolutions). We present MSP-tree both as a region-based approach that describes the refinement mechanism succintly and intuitively, and as a lattice-based approach better suited for implementation. The MSP-tree offers a robust, highly symmetric tessellation of 3D space with favorable image processing properties.