基于ARM芯片的动态肌电滤波心电提取与重构系统的实现

Chang-Hsi Wu, Wu-Xun Liu, Ming-Sheng Lin, Junji Chen
{"title":"基于ARM芯片的动态肌电滤波心电提取与重构系统的实现","authors":"Chang-Hsi Wu, Wu-Xun Liu, Ming-Sheng Lin, Junji Chen","doi":"10.1109/ICIASE45644.2019.9074076","DOIUrl":null,"url":null,"abstract":"This paper proposes two ECG signal processing algorithms for eliminating baseline drift and electromyogram (EMG) interference. Baseline drift in ECG signals is eliminated using Moving Average Filter (MAF) and the zero-crossing segmentation method is proposed so that the reconstructed ECG signal does not have an abnormal waveform. To eliminate the EMG component, the period-squared empirical learning method of pure EMG and ECG is proposed to find the threshold for identifying EMG, and then the peripheral weighted ECG method is used to reconstruct the ECG signal. Finally, a 12-lead ECG capture and filter board design is also implemented in this paper, which can be used to verify immediate ECG filtering performance.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"697 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An ECG Extraction and Reconstruction System with Dynamic EMG Filtering Implemented on an ARM Chip\",\"authors\":\"Chang-Hsi Wu, Wu-Xun Liu, Ming-Sheng Lin, Junji Chen\",\"doi\":\"10.1109/ICIASE45644.2019.9074076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two ECG signal processing algorithms for eliminating baseline drift and electromyogram (EMG) interference. Baseline drift in ECG signals is eliminated using Moving Average Filter (MAF) and the zero-crossing segmentation method is proposed so that the reconstructed ECG signal does not have an abnormal waveform. To eliminate the EMG component, the period-squared empirical learning method of pure EMG and ECG is proposed to find the threshold for identifying EMG, and then the peripheral weighted ECG method is used to reconstruct the ECG signal. Finally, a 12-lead ECG capture and filter board design is also implemented in this paper, which can be used to verify immediate ECG filtering performance.\",\"PeriodicalId\":206741,\"journal\":{\"name\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"volume\":\"697 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASE45644.2019.9074076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了两种消除基线漂移和肌电图干扰的心电信号处理算法。采用移动平均滤波器(MAF)消除心电信号中的基线漂移,并提出过零分割方法,使重构的心电信号无异常波形。为了消除肌电信号分量,提出了纯肌电信号和心电信号的周期平方经验学习方法来寻找识别肌电信号的阈值,然后使用周边加权心电信号重构心电信号。最后,本文还实现了一个12导联心电采集和滤波板的设计,可以用来验证即时心电滤波的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ECG Extraction and Reconstruction System with Dynamic EMG Filtering Implemented on an ARM Chip
This paper proposes two ECG signal processing algorithms for eliminating baseline drift and electromyogram (EMG) interference. Baseline drift in ECG signals is eliminated using Moving Average Filter (MAF) and the zero-crossing segmentation method is proposed so that the reconstructed ECG signal does not have an abnormal waveform. To eliminate the EMG component, the period-squared empirical learning method of pure EMG and ECG is proposed to find the threshold for identifying EMG, and then the peripheral weighted ECG method is used to reconstruct the ECG signal. Finally, a 12-lead ECG capture and filter board design is also implemented in this paper, which can be used to verify immediate ECG filtering performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Harvesting Path Planning Strategy on the Quality of Information for Wireless Sensor Networks PHGWO: A Duty Cycle Design Method for High-density Wireless Sensor Networks Obstacle Avoidance Path Planning Based on Target Heuristic and Repair Genetic Algorithms Research on Thermal Error of CNC Machine Tool Based on DBSCAN Clustering and BP Neural Network Algorithm Implementation of Remote Control a Mower Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1