基于改进Softmax层的自定义卷积神经网络设计用于实时人类情绪识别

Kai-Yen Wang, Yu-De Huang, Yun-Lung Ho, W. Fang
{"title":"基于改进Softmax层的自定义卷积神经网络设计用于实时人类情绪识别","authors":"Kai-Yen Wang, Yu-De Huang, Yun-Lung Ho, W. Fang","doi":"10.1109/AICAS.2019.8771616","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Customized Convolutional Neural Network Design Using Improved Softmax Layer for Real-time Human Emotion Recognition\",\"authors\":\"Kai-Yen Wang, Yu-De Huang, Yun-Lung Ho, W. Fang\",\"doi\":\"10.1109/AICAS.2019.8771616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种改进的softmax层算法和硬件实现,适用于基于脑电图的有效卷积神经网络实时人类情绪识别。与一般的softmax层相比,本硬件设计增加了阈值层,加快了训练速度,并用动态基值代替欧拉基值,提高了网络精度。本工作还展示了一种在芯片上实现批规范化层的硬件友好的方法。使用EEG情绪DEAP[7]数据库,分类准确率最高为96.03%,平均为83.88%。在这项工作中,使用改进的softmax层可以节省高达15%的训练模型收敛时间,并提高3 - 5%的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Customized Convolutional Neural Network Design Using Improved Softmax Layer for Real-time Human Emotion Recognition
This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1