在压缩机故障分类中,保持模型效率,避免偏差,减少输入参数量

Ann Smith, F. Gu, A. Ball
{"title":"在压缩机故障分类中,保持模型效率,避免偏差,减少输入参数量","authors":"Ann Smith, F. Gu, A. Ball","doi":"10.1109/ICMAE.2016.7549534","DOIUrl":null,"url":null,"abstract":"With the exponential growth in data collection and storage and the necessity for timely prognostic health monitoring of industrial processes traditional methods of data analysis are becoming redundant. Big data sets and huge volumes of inputs give rise to equally massive computational requirements. In this paper the differences in input parameter selection using a subset of the original variables and using data reduction techniques are compared. Each selection procedure being illustrated by both statistical methods and machine learning techniques. It is shown that the subsequent classification models are highly comparable. Finally the merits of a combined multivariate statistical and wavelet decomposition approach is considered. Techniques are applied to output signals from an experimental compressor rig.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maintaining model efficiency, avoiding bias and reducing input parameter volume in compressor fault classification\",\"authors\":\"Ann Smith, F. Gu, A. Ball\",\"doi\":\"10.1109/ICMAE.2016.7549534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the exponential growth in data collection and storage and the necessity for timely prognostic health monitoring of industrial processes traditional methods of data analysis are becoming redundant. Big data sets and huge volumes of inputs give rise to equally massive computational requirements. In this paper the differences in input parameter selection using a subset of the original variables and using data reduction techniques are compared. Each selection procedure being illustrated by both statistical methods and machine learning techniques. It is shown that the subsequent classification models are highly comparable. Finally the merits of a combined multivariate statistical and wavelet decomposition approach is considered. Techniques are applied to output signals from an experimental compressor rig.\",\"PeriodicalId\":371629,\"journal\":{\"name\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMAE.2016.7549534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着数据收集和存储的指数级增长以及对工业过程进行及时预测健康监测的必要性,传统的数据分析方法变得多余。大数据集和海量输入产生了同样庞大的计算需求。本文比较了使用原始变量子集和使用数据约简技术在输入参数选择方面的差异。每个选择过程都用统计方法和机器学习技术来说明。结果表明,后续的分类模型具有很强的可比性。最后讨论了多元统计与小波分解相结合的方法的优点。将技术应用于压缩试验台的输出信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maintaining model efficiency, avoiding bias and reducing input parameter volume in compressor fault classification
With the exponential growth in data collection and storage and the necessity for timely prognostic health monitoring of industrial processes traditional methods of data analysis are becoming redundant. Big data sets and huge volumes of inputs give rise to equally massive computational requirements. In this paper the differences in input parameter selection using a subset of the original variables and using data reduction techniques are compared. Each selection procedure being illustrated by both statistical methods and machine learning techniques. It is shown that the subsequent classification models are highly comparable. Finally the merits of a combined multivariate statistical and wavelet decomposition approach is considered. Techniques are applied to output signals from an experimental compressor rig.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D peak based long range rover localization Demonstrating a holographic memory having 100 Mrad total-ionizing-dose tolerance Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment Dynamic analysis of vibration casting equipment Experimental study on internal flowfield characteristics and start-unstart behaviour in a two-dimensional variable geometry inlet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1