Jia Yu, Xiaodong Mao, G. Lin, L. Bai, Haichuan Jin, Z. Mu
{"title":"双座逃生系统弹道发散技术研究及实验验证","authors":"Jia Yu, Xiaodong Mao, G. Lin, L. Bai, Haichuan Jin, Z. Mu","doi":"10.1109/ICMAE.2016.7549609","DOIUrl":null,"url":null,"abstract":"Trajectory interference is a critical problem for the two-seat escape system in low speed which will seriously threaten the pilot's life. In this research, a divergence technology was designed and adopted. The computational simulation method was firstly utilized to analyze and evaluate the trajectory divergence characteristics involving divergence performance and the influence of divergence on ejection height. The mathematical formulations of the entire ejection sequence were established. According to the thoughts of modularization, a solver platform containing many modules depend on the basic physical parts was programmed. By the data flow between modules the realistic physical process could be simulated. The simulation results indicated that the divergence technology effectively prevent the two seats from interference at whole velocity range. Although the ejection height was maximum reduced 12 meters, the integrate performance of the system sufficed the life-saving demands. Subsequently, two-seat rocket sled test was implemented. The results showed that the interference was prevented and the parachute developed successfully before landing which ultimately verified the divergence technology in improving the performance of the two-seat escape system. Consequently, the technology could be applied in engineering.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on trajectory divergence technology for double-seat escape system and experimental validation\",\"authors\":\"Jia Yu, Xiaodong Mao, G. Lin, L. Bai, Haichuan Jin, Z. Mu\",\"doi\":\"10.1109/ICMAE.2016.7549609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory interference is a critical problem for the two-seat escape system in low speed which will seriously threaten the pilot's life. In this research, a divergence technology was designed and adopted. The computational simulation method was firstly utilized to analyze and evaluate the trajectory divergence characteristics involving divergence performance and the influence of divergence on ejection height. The mathematical formulations of the entire ejection sequence were established. According to the thoughts of modularization, a solver platform containing many modules depend on the basic physical parts was programmed. By the data flow between modules the realistic physical process could be simulated. The simulation results indicated that the divergence technology effectively prevent the two seats from interference at whole velocity range. Although the ejection height was maximum reduced 12 meters, the integrate performance of the system sufficed the life-saving demands. Subsequently, two-seat rocket sled test was implemented. The results showed that the interference was prevented and the parachute developed successfully before landing which ultimately verified the divergence technology in improving the performance of the two-seat escape system. Consequently, the technology could be applied in engineering.\",\"PeriodicalId\":371629,\"journal\":{\"name\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMAE.2016.7549609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on trajectory divergence technology for double-seat escape system and experimental validation
Trajectory interference is a critical problem for the two-seat escape system in low speed which will seriously threaten the pilot's life. In this research, a divergence technology was designed and adopted. The computational simulation method was firstly utilized to analyze and evaluate the trajectory divergence characteristics involving divergence performance and the influence of divergence on ejection height. The mathematical formulations of the entire ejection sequence were established. According to the thoughts of modularization, a solver platform containing many modules depend on the basic physical parts was programmed. By the data flow between modules the realistic physical process could be simulated. The simulation results indicated that the divergence technology effectively prevent the two seats from interference at whole velocity range. Although the ejection height was maximum reduced 12 meters, the integrate performance of the system sufficed the life-saving demands. Subsequently, two-seat rocket sled test was implemented. The results showed that the interference was prevented and the parachute developed successfully before landing which ultimately verified the divergence technology in improving the performance of the two-seat escape system. Consequently, the technology could be applied in engineering.