CO2运移过程中泥岩盖层单裂缝的开闭与自闭行为

N. Kampman
{"title":"CO2运移过程中泥岩盖层单裂缝的开闭与自闭行为","authors":"N. Kampman","doi":"10.3997/2214-4609.201802967","DOIUrl":null,"url":null,"abstract":"Reactions between CO2 and CO2-charged brines and mudrocks may inhibit CO2 leakage via the precipitation of carbonate minerals or via swelling of clay minerals or enhance leakage via the corrosion of carbonate cements. The timescales for the potential self-sealing behaviour, and/or the magnitudes of the permeability enhancements are uncertain. Laboratory experiments can provide constraints on the intrinsic fracture permeabilities, but the quantification of permeability changes following reaction or under conditions of multiphase flow is challenging in the laboratory. Reactive transport modelling (RTM) provides a numerical laboratory in which the intrinsic permeabilities of rough fractures, and the coupling of the flow and reaction processes, can be investigated. A modified local cubic law (MLCL) is used to model rough fracture permeability, and coupling of permeability-porosity changes to mineralization and clay swelling. The results show that the intrinsic permeability of self-affine fractures is primarily dependent on the roughness and degree of correlation between the two fracture surfaces, and that with increasing roughness the simulated fracture permeabilities are systematically lower than permeabilities predicted from the fracture aperture mean using a cubic law. The dependence of fracture permeabilities on reactions is investigated, and the relationship between mineralization behaviour and fluid residence time is discussed.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Opening Versus Self-Sealing Behaviour Of Single Fractures In Mudstone Caprocks During CO2 Migration\",\"authors\":\"N. Kampman\",\"doi\":\"10.3997/2214-4609.201802967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactions between CO2 and CO2-charged brines and mudrocks may inhibit CO2 leakage via the precipitation of carbonate minerals or via swelling of clay minerals or enhance leakage via the corrosion of carbonate cements. The timescales for the potential self-sealing behaviour, and/or the magnitudes of the permeability enhancements are uncertain. Laboratory experiments can provide constraints on the intrinsic fracture permeabilities, but the quantification of permeability changes following reaction or under conditions of multiphase flow is challenging in the laboratory. Reactive transport modelling (RTM) provides a numerical laboratory in which the intrinsic permeabilities of rough fractures, and the coupling of the flow and reaction processes, can be investigated. A modified local cubic law (MLCL) is used to model rough fracture permeability, and coupling of permeability-porosity changes to mineralization and clay swelling. The results show that the intrinsic permeability of self-affine fractures is primarily dependent on the roughness and degree of correlation between the two fracture surfaces, and that with increasing roughness the simulated fracture permeabilities are systematically lower than permeabilities predicted from the fracture aperture mean using a cubic law. The dependence of fracture permeabilities on reactions is investigated, and the relationship between mineralization behaviour and fluid residence time is discussed.\",\"PeriodicalId\":254996,\"journal\":{\"name\":\"Fifth CO2 Geological Storage Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth CO2 Geological Storage Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201802967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

CO2与带CO2电荷的盐水和泥岩之间的反应可以抑制CO2通过碳酸盐矿物的沉淀或粘土矿物的膨胀而泄漏,或通过碳酸盐胶结物的腐蚀而增加泄漏。潜在的自密封行为的时间尺度和/或渗透率增强的幅度是不确定的。实验室实验可以提供裂缝固有渗透率的约束条件,但在实验室中,对反应后或多相流条件下渗透率变化的量化具有挑战性。反应输运模型(RTM)提供了一个数值实验室,可以研究粗糙裂缝的固有渗透率以及流动和反应过程的耦合。采用改进的局部立方定律(MLCL)来模拟粗裂缝渗透率,以及渗透率-孔隙度变化与矿化和粘土膨胀的耦合关系。结果表明,自仿射裂缝的固有渗透率主要取决于裂缝表面的粗糙度和两裂缝表面之间的相关程度,随着粗糙度的增加,模拟的裂缝渗透率系统地低于利用三次定律从裂缝孔径平均值预测的渗透率。研究了裂缝渗透率对反应的依赖性,并讨论了成矿行为与流体停留时间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opening Versus Self-Sealing Behaviour Of Single Fractures In Mudstone Caprocks During CO2 Migration
Reactions between CO2 and CO2-charged brines and mudrocks may inhibit CO2 leakage via the precipitation of carbonate minerals or via swelling of clay minerals or enhance leakage via the corrosion of carbonate cements. The timescales for the potential self-sealing behaviour, and/or the magnitudes of the permeability enhancements are uncertain. Laboratory experiments can provide constraints on the intrinsic fracture permeabilities, but the quantification of permeability changes following reaction or under conditions of multiphase flow is challenging in the laboratory. Reactive transport modelling (RTM) provides a numerical laboratory in which the intrinsic permeabilities of rough fractures, and the coupling of the flow and reaction processes, can be investigated. A modified local cubic law (MLCL) is used to model rough fracture permeability, and coupling of permeability-porosity changes to mineralization and clay swelling. The results show that the intrinsic permeability of self-affine fractures is primarily dependent on the roughness and degree of correlation between the two fracture surfaces, and that with increasing roughness the simulated fracture permeabilities are systematically lower than permeabilities predicted from the fracture aperture mean using a cubic law. The dependence of fracture permeabilities on reactions is investigated, and the relationship between mineralization behaviour and fluid residence time is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Resolution Modelling And Steady-State Upscaling Of Large Scale Gravity Currents In Heterogeneous Sandstone Reservoirs Assessing Potential Influence Of Nearby Hydrocarbon Production On CO2 Storage At Smeaheia Quantifying The Risk Of CO2 Leakage Along Fractures Using An Integrated Experimental, Multiscale Modelling And Monitoring Approach Using Well Operation Noise To Estimate Shear Modulus Changes From Measured Tube Waves – A Feasibility Study CO2 Injection In Low Pressure Depleted Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1