面向边缘计算的光网络中基于双向长短期记忆和注意力的在线流量分类方案

Zhengjie Sun, Hui Yang, Chao Li, Q. Yao, B. Bao, J. Zhang, Yunbo Li, Dechao Zhang, Dong Wang
{"title":"面向边缘计算的光网络中基于双向长短期记忆和注意力的在线流量分类方案","authors":"Zhengjie Sun, Hui Yang, Chao Li, Q. Yao, B. Bao, J. Zhang, Yunbo Li, Dechao Zhang, Dong Wang","doi":"10.1109/piers55526.2022.9793135","DOIUrl":null,"url":null,"abstract":"This paper proposes an online traffic classification scheme based on Bi-LSTM and attention approach in edge computing oriented optical networks. Results confirm that the proposed scheme achieves high-accuracy and rapid traffic classification under the condition of large traffic load.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Traffic Classification Scheme Based on Bidirectional Long-short Term Memory and Attention in Edge Computing Oriented Optical Networks\",\"authors\":\"Zhengjie Sun, Hui Yang, Chao Li, Q. Yao, B. Bao, J. Zhang, Yunbo Li, Dechao Zhang, Dong Wang\",\"doi\":\"10.1109/piers55526.2022.9793135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an online traffic classification scheme based on Bi-LSTM and attention approach in edge computing oriented optical networks. Results confirm that the proposed scheme achieves high-accuracy and rapid traffic classification under the condition of large traffic load.\",\"PeriodicalId\":422383,\"journal\":{\"name\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/piers55526.2022.9793135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9793135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在面向边缘计算的光网络中,提出了一种基于Bi-LSTM和注意力方法的在线流量分类方案。实验结果表明,该方法在大流量负载条件下实现了高精度、快速的流量分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Traffic Classification Scheme Based on Bidirectional Long-short Term Memory and Attention in Edge Computing Oriented Optical Networks
This paper proposes an online traffic classification scheme based on Bi-LSTM and attention approach in edge computing oriented optical networks. Results confirm that the proposed scheme achieves high-accuracy and rapid traffic classification under the condition of large traffic load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Doppler and Micro-Doppler Effect Induced by Time-modulated Metasurface A Physics-based Compact Model for Set Process of Resistive Random Access Memory (RRAM) with Graphene Electrode An Overview of Metamaterial Absorbers and Their Applications on Antennas Spatio-Temporal Data Prediction of Braking System Based on Residual Error Homogenization Based Fast Computation of Electromagnetic Scattering by Inhomogeneous Objects with Honeycomb Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1