结合进化策略和梯度下降法的贝叶斯分类器判别学习

Xuefeng Chen, Xiabi Liu, Yunde Jia
{"title":"结合进化策略和梯度下降法的贝叶斯分类器判别学习","authors":"Xuefeng Chen, Xiabi Liu, Yunde Jia","doi":"10.1145/1569901.1569972","DOIUrl":null,"url":null,"abstract":"The optimization method is one of key issues in discriminative learning of pattern classifiers. This paper proposes a hybrid approach of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the gradient decent method for optimizing Bayesian classifiers under the SOFT target based Max-Min posterior Pseudo-probabilities (Soft-MMP) learning framework. In our hybrid optimization approach, the weighted mean of the parent population in the CMA-ES is adjusted by exploiting the gradient information of objective function, based on which the offspring is generated. As a result, the efficiency and the effectiveness of the CMA-ES are improved. We apply the Soft-MMP with the proposed hybrid optimization approach to handwritten digit recognition. The experiments on the CENPARMI database show that our handwritten digit classifier outperforms other state-of-the-art techniques. Furthermore, our hybrid optimization approach behaved better than not only the single gradient decent method but also the single CMA-ES in the experiments.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Combining evolution strategy and gradient descent method for discriminative learning of bayesian classifiers\",\"authors\":\"Xuefeng Chen, Xiabi Liu, Yunde Jia\",\"doi\":\"10.1145/1569901.1569972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization method is one of key issues in discriminative learning of pattern classifiers. This paper proposes a hybrid approach of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the gradient decent method for optimizing Bayesian classifiers under the SOFT target based Max-Min posterior Pseudo-probabilities (Soft-MMP) learning framework. In our hybrid optimization approach, the weighted mean of the parent population in the CMA-ES is adjusted by exploiting the gradient information of objective function, based on which the offspring is generated. As a result, the efficiency and the effectiveness of the CMA-ES are improved. We apply the Soft-MMP with the proposed hybrid optimization approach to handwritten digit recognition. The experiments on the CENPARMI database show that our handwritten digit classifier outperforms other state-of-the-art techniques. Furthermore, our hybrid optimization approach behaved better than not only the single gradient decent method but also the single CMA-ES in the experiments.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

优化方法是模式分类器判别学习的关键问题之一。在基于SOFT目标的最大-最小后验伪概率(SOFT - mmp)学习框架下,提出了一种基于协方差矩阵自适应进化策略(CMA-ES)和梯度优化方法的贝叶斯分类器优化方法。在混合优化方法中,利用目标函数的梯度信息对CMA-ES中亲本种群的加权均值进行调整,在此基础上生成后代。从而提高了CMA-ES的效率和有效性。我们将Soft-MMP与所提出的混合优化方法应用于手写数字识别。在CENPARMI数据库上的实验表明,我们的手写数字分类器优于其他最先进的技术。实验结果表明,混合优化方法不仅优于单一梯度优化方法,而且优于单一CMA-ES优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining evolution strategy and gradient descent method for discriminative learning of bayesian classifiers
The optimization method is one of key issues in discriminative learning of pattern classifiers. This paper proposes a hybrid approach of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the gradient decent method for optimizing Bayesian classifiers under the SOFT target based Max-Min posterior Pseudo-probabilities (Soft-MMP) learning framework. In our hybrid optimization approach, the weighted mean of the parent population in the CMA-ES is adjusted by exploiting the gradient information of objective function, based on which the offspring is generated. As a result, the efficiency and the effectiveness of the CMA-ES are improved. We apply the Soft-MMP with the proposed hybrid optimization approach to handwritten digit recognition. The experiments on the CENPARMI database show that our handwritten digit classifier outperforms other state-of-the-art techniques. Furthermore, our hybrid optimization approach behaved better than not only the single gradient decent method but also the single CMA-ES in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1