基于本体演化的异构深度网络数据提取

Kerui Chen, Jinchao Zhao, Wanli Zuo, Fengling He, Yongheng Chen
{"title":"基于本体演化的异构深度网络数据提取","authors":"Kerui Chen, Jinchao Zhao, Wanli Zuo, Fengling He, Yongheng Chen","doi":"10.4156/JCIT.VOL5.ISSUE8.23","DOIUrl":null,"url":null,"abstract":"This paper proposed a complex ontology evolution based method of extracting data, and also completely designed an extraction system, which consists of four important components: Resolver, Extractor, Consolidator and the ontology construction components. The system gives priority to the construction of mini-ontology. When the user submits query keywords to the deep web query interface, the returned result will pass through the prior three components; after that, the final execution result will be returned to user in a unified form. This paper adopted an extraction method that is different from the general ontology extraction. More specifically, the ontology used in extraction here is dynamic evolution, which can adapt various data source better. Experimental results proved that this method could effectively extract the data in the query result pages.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Heterogeneous Deep Web Data Extraction Using Ontology Evolution\",\"authors\":\"Kerui Chen, Jinchao Zhao, Wanli Zuo, Fengling He, Yongheng Chen\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a complex ontology evolution based method of extracting data, and also completely designed an extraction system, which consists of four important components: Resolver, Extractor, Consolidator and the ontology construction components. The system gives priority to the construction of mini-ontology. When the user submits query keywords to the deep web query interface, the returned result will pass through the prior three components; after that, the final execution result will be returned to user in a unified form. This paper adopted an extraction method that is different from the general ontology extraction. More specifically, the ontology used in extraction here is dynamic evolution, which can adapt various data source better. Experimental results proved that this method could effectively extract the data in the query result pages.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于复杂本体进化的数据提取方法,并完整设计了一个数据提取系统,该系统由解析器(Resolver)、提取器(Extractor)、整合器(Consolidator)和本体构建组件四个重要组成部分组成。该系统优先考虑了微型本体的构建。当用户向深网查询接口提交查询关键字时,返回的结果将通过前面三个组件;之后,最终的执行结果将以统一的形式返回给用户。本文采用了一种不同于一般本体抽取的抽取方法。更具体地说,这里的抽取使用的本体是动态进化的,可以更好地适应各种数据源。实验结果证明,该方法可以有效地提取查询结果页面中的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Deep Web Data Extraction Using Ontology Evolution
This paper proposed a complex ontology evolution based method of extracting data, and also completely designed an extraction system, which consists of four important components: Resolver, Extractor, Consolidator and the ontology construction components. The system gives priority to the construction of mini-ontology. When the user submits query keywords to the deep web query interface, the returned result will pass through the prior three components; after that, the final execution result will be returned to user in a unified form. This paper adopted an extraction method that is different from the general ontology extraction. More specifically, the ontology used in extraction here is dynamic evolution, which can adapt various data source better. Experimental results proved that this method could effectively extract the data in the query result pages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1