基于dsp的心脏病识别低功耗低噪声心电采集系统

Bo-Yu Shiu, Shuohan Wang, Y. Chu, T. Tsai
{"title":"基于dsp的心脏病识别低功耗低噪声心电采集系统","authors":"Bo-Yu Shiu, Shuohan Wang, Y. Chu, T. Tsai","doi":"10.1109/BioCAS.2013.6679630","DOIUrl":null,"url":null,"abstract":"In this paper, we implemented a low-power low-noise ECG acquisition system for heart disease identifications. The ECG signal is acquired with an analog front-end circuit, and the offset and baseline drift is eliminated at the same time. We also implemented a digital signal processing (DSP) unit to effectively remove EMG interferences. Interception of ST segment is proposed to achieve the identification of heart diseases. The ECG front-end chip has been designed and fabricated by using a TSMC 90nm CMOS technology, the total power consumption was measured at 40.3μW. DSP algorithms are carried out in the FPGA. Experimental results show that the sensitivity and specificity of ST segment classification after EMG elimination is 96.6% and 93.1%, respectively.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Low-power low-noise ECG acquisition system with dsp for heart disease identification\",\"authors\":\"Bo-Yu Shiu, Shuohan Wang, Y. Chu, T. Tsai\",\"doi\":\"10.1109/BioCAS.2013.6679630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we implemented a low-power low-noise ECG acquisition system for heart disease identifications. The ECG signal is acquired with an analog front-end circuit, and the offset and baseline drift is eliminated at the same time. We also implemented a digital signal processing (DSP) unit to effectively remove EMG interferences. Interception of ST segment is proposed to achieve the identification of heart diseases. The ECG front-end chip has been designed and fabricated by using a TSMC 90nm CMOS technology, the total power consumption was measured at 40.3μW. DSP algorithms are carried out in the FPGA. Experimental results show that the sensitivity and specificity of ST segment classification after EMG elimination is 96.6% and 93.1%, respectively.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们实现了一种用于心脏病识别的低功耗低噪声心电采集系统。采用模拟前端电路采集心电信号,同时消除了偏移和基线漂移。我们还实现了一个数字信号处理(DSP)单元来有效地去除肌电图干扰。提出ST段阻断,实现心脏疾病的识别。采用台积电90nm CMOS工艺设计制作了心电前端芯片,总功耗为40.3μW。DSP算法在FPGA中实现。实验结果表明,消除肌电图后ST段分类的灵敏度和特异性分别为96.6%和93.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-power low-noise ECG acquisition system with dsp for heart disease identification
In this paper, we implemented a low-power low-noise ECG acquisition system for heart disease identifications. The ECG signal is acquired with an analog front-end circuit, and the offset and baseline drift is eliminated at the same time. We also implemented a digital signal processing (DSP) unit to effectively remove EMG interferences. Interception of ST segment is proposed to achieve the identification of heart diseases. The ECG front-end chip has been designed and fabricated by using a TSMC 90nm CMOS technology, the total power consumption was measured at 40.3μW. DSP algorithms are carried out in the FPGA. Experimental results show that the sensitivity and specificity of ST segment classification after EMG elimination is 96.6% and 93.1%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1