{"title":"粒子群优化中惯性权重和收缩因子的比较","authors":"R. Eberhart, Yuhui Shi","doi":"10.1109/CEC.2000.870279","DOIUrl":null,"url":null,"abstract":"The performance of particle swarm optimization using an inertia weight is compared with performance using a constriction factor. Five benchmark functions are used for the comparison. It is concluded that the best approach is to use the constriction factor while limiting the maximum velocity Vmax to the dynamic range of the variable Xmax on each dimension. This approach provides performance on the benchmark functions superior to any other published results known by the authors.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3059","resultStr":"{\"title\":\"Comparing inertia weights and constriction factors in particle swarm optimization\",\"authors\":\"R. Eberhart, Yuhui Shi\",\"doi\":\"10.1109/CEC.2000.870279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of particle swarm optimization using an inertia weight is compared with performance using a constriction factor. Five benchmark functions are used for the comparison. It is concluded that the best approach is to use the constriction factor while limiting the maximum velocity Vmax to the dynamic range of the variable Xmax on each dimension. This approach provides performance on the benchmark functions superior to any other published results known by the authors.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3059\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing inertia weights and constriction factors in particle swarm optimization
The performance of particle swarm optimization using an inertia weight is compared with performance using a constriction factor. Five benchmark functions are used for the comparison. It is concluded that the best approach is to use the constriction factor while limiting the maximum velocity Vmax to the dynamic range of the variable Xmax on each dimension. This approach provides performance on the benchmark functions superior to any other published results known by the authors.