支持可撤销生物特征令牌的人脸识别鲁棒距离度量

T. Boult
{"title":"支持可撤销生物特征令牌的人脸识别鲁棒距离度量","authors":"T. Boult","doi":"10.1109/FGR.2006.94","DOIUrl":null,"url":null,"abstract":"This paper explores a form of robust distance measures for biometrics and presents experiments showing that, when applied per \"class\" they can dramatically improve the accuracy of face recognition. We \"robustify'' many distance measures included in the CSU face-recognition toolkit, and apply them to PCA, LDA and EBGM. The resulting performance puts each of these algorithms, for the FERET datasets tested, on par with commercial face recognition results. Unlike passwords, biometric signatures cannot be changed or revoked. This paper shows how the robust distance measures introduce can be used for secure robust revocable biometrics. The technique produces what we call Biotopestrade, which provide public-key cryptographic security, supports matching in encoded form, cannot be linked across different databases and are revocable. Biotopes support a robust distance measure computed on the encoded form that is proven not to decrease, and that may potentially increase, accurately. The approach is demonstrated, to improve performance beyond the already impressive gains from the robust distance measure","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Robust distance measures for face-recognition supporting revocable biometric tokens\",\"authors\":\"T. Boult\",\"doi\":\"10.1109/FGR.2006.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a form of robust distance measures for biometrics and presents experiments showing that, when applied per \\\"class\\\" they can dramatically improve the accuracy of face recognition. We \\\"robustify'' many distance measures included in the CSU face-recognition toolkit, and apply them to PCA, LDA and EBGM. The resulting performance puts each of these algorithms, for the FERET datasets tested, on par with commercial face recognition results. Unlike passwords, biometric signatures cannot be changed or revoked. This paper shows how the robust distance measures introduce can be used for secure robust revocable biometrics. The technique produces what we call Biotopestrade, which provide public-key cryptographic security, supports matching in encoded form, cannot be linked across different databases and are revocable. Biotopes support a robust distance measure computed on the encoded form that is proven not to decrease, and that may potentially increase, accurately. The approach is demonstrated, to improve performance beyond the already impressive gains from the robust distance measure\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文探讨了一种用于生物识别的鲁棒距离测量形式,并提出了实验表明,当应用于每个“类”时,它们可以显着提高人脸识别的准确性。我们“鲁棒化”了CSU人脸识别工具包中包含的许多距离度量,并将它们应用于PCA, LDA和EBGM。结果表明,对于测试的FERET数据集,这些算法的性能与商业人脸识别结果相当。与密码不同,生物特征签名不能更改或撤销。本文展示了引入的鲁棒距离度量如何用于安全的鲁棒可撤销生物识别。这种技术产生了我们所说的Biotopestrade,它提供了公开密钥加密安全性,支持编码形式的匹配,不能跨不同数据库链接,并且是可撤销的。生物群落支持一种基于编码形式计算的可靠的距离测量,这种距离测量被证明不会减少,而且可能会准确地增加。该方法已被证明,以提高性能超出已经令人印象深刻的增益从鲁棒距离测量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust distance measures for face-recognition supporting revocable biometric tokens
This paper explores a form of robust distance measures for biometrics and presents experiments showing that, when applied per "class" they can dramatically improve the accuracy of face recognition. We "robustify'' many distance measures included in the CSU face-recognition toolkit, and apply them to PCA, LDA and EBGM. The resulting performance puts each of these algorithms, for the FERET datasets tested, on par with commercial face recognition results. Unlike passwords, biometric signatures cannot be changed or revoked. This paper shows how the robust distance measures introduce can be used for secure robust revocable biometrics. The technique produces what we call Biotopestrade, which provide public-key cryptographic security, supports matching in encoded form, cannot be linked across different databases and are revocable. Biotopes support a robust distance measure computed on the encoded form that is proven not to decrease, and that may potentially increase, accurately. The approach is demonstrated, to improve performance beyond the already impressive gains from the robust distance measure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1