S. Morozov, R. Reshetnikov, Victor A. Gombolevskiy, N. Ledikhova, I. Blokhin, V. Kljashtorny, O. Mokienko, A. Vladzymyrskyy
{"title":"计算机断层扫描识别COVID-19患者住院情况的诊断准确性","authors":"S. Morozov, R. Reshetnikov, Victor A. Gombolevskiy, N. Ledikhova, I. Blokhin, V. Kljashtorny, O. Mokienko, A. Vladzymyrskyy","doi":"10.17816/DD46818","DOIUrl":null,"url":null,"abstract":"The controversy of computed tomography (CT) use in COVID-19 screening is associated with ambiguous characteristics of chest CT as a diagnostic test. The reported values of CT sensitivity and specificity calculated using RT-PCR as a reference standard vary widely. The objective of this study was to reevaluate the diagnostic and prognostic value of CT using an alternative approach. This study included 973 symptomatic COVID-19 patients aged 42 $\\pm$ 17 years, 56% females. We reviewed the disease dynamics between the initial and follow-up CT studies using a \"CT0-4\" grading system. Sensitivity and specificity were calculated as conditional probabilities that a patient's condition would improve or deteriorate relative to the initial CT study results. For the calculation of negative (NPV) and positive (PPV) predictive values, we estimated the COVID-19 prevalence in Moscow. We used several ARIMA and EST models with different parameters to fit the data on total cases of COVID-19 from March 6, 2020, to July 20, 2020, and forecast the incidence. The \"CT0-4\" grading scale demonstrated low sensitivity (28%) but high specificity (95%). The best statistical model for describing the pandemic in Moscow was ETS with multiplicative trend, error, and season type. According to our calculations, with the predicted prevalence of 2.1%, the values of NPV and PPV would be 98% and 10%, correspondingly. We associate the low sensitivity and PPV values with the small sample size of the patients with severe symptoms and non-optimal methodological setup for measuring these specific characteristics. The \"CT0-4\" grading scale was highly specific and predictive for identifying admissions to hospitals of COVID-19 patients. Despite the ambiguous accuracy, chest CT proved to be an effective practical tool for patient management during the pandemic, provided that the necessary infrastructure and human resources are available.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Diagnostic accuracy of computed tomography for identifying hospitalizations for patients with COVID-19\",\"authors\":\"S. Morozov, R. Reshetnikov, Victor A. Gombolevskiy, N. Ledikhova, I. Blokhin, V. Kljashtorny, O. Mokienko, A. Vladzymyrskyy\",\"doi\":\"10.17816/DD46818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The controversy of computed tomography (CT) use in COVID-19 screening is associated with ambiguous characteristics of chest CT as a diagnostic test. The reported values of CT sensitivity and specificity calculated using RT-PCR as a reference standard vary widely. The objective of this study was to reevaluate the diagnostic and prognostic value of CT using an alternative approach. This study included 973 symptomatic COVID-19 patients aged 42 $\\\\pm$ 17 years, 56% females. We reviewed the disease dynamics between the initial and follow-up CT studies using a \\\"CT0-4\\\" grading system. Sensitivity and specificity were calculated as conditional probabilities that a patient's condition would improve or deteriorate relative to the initial CT study results. For the calculation of negative (NPV) and positive (PPV) predictive values, we estimated the COVID-19 prevalence in Moscow. We used several ARIMA and EST models with different parameters to fit the data on total cases of COVID-19 from March 6, 2020, to July 20, 2020, and forecast the incidence. The \\\"CT0-4\\\" grading scale demonstrated low sensitivity (28%) but high specificity (95%). The best statistical model for describing the pandemic in Moscow was ETS with multiplicative trend, error, and season type. According to our calculations, with the predicted prevalence of 2.1%, the values of NPV and PPV would be 98% and 10%, correspondingly. We associate the low sensitivity and PPV values with the small sample size of the patients with severe symptoms and non-optimal methodological setup for measuring these specific characteristics. The \\\"CT0-4\\\" grading scale was highly specific and predictive for identifying admissions to hospitals of COVID-19 patients. Despite the ambiguous accuracy, chest CT proved to be an effective practical tool for patient management during the pandemic, provided that the necessary infrastructure and human resources are available.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/DD46818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/DD46818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnostic accuracy of computed tomography for identifying hospitalizations for patients with COVID-19
The controversy of computed tomography (CT) use in COVID-19 screening is associated with ambiguous characteristics of chest CT as a diagnostic test. The reported values of CT sensitivity and specificity calculated using RT-PCR as a reference standard vary widely. The objective of this study was to reevaluate the diagnostic and prognostic value of CT using an alternative approach. This study included 973 symptomatic COVID-19 patients aged 42 $\pm$ 17 years, 56% females. We reviewed the disease dynamics between the initial and follow-up CT studies using a "CT0-4" grading system. Sensitivity and specificity were calculated as conditional probabilities that a patient's condition would improve or deteriorate relative to the initial CT study results. For the calculation of negative (NPV) and positive (PPV) predictive values, we estimated the COVID-19 prevalence in Moscow. We used several ARIMA and EST models with different parameters to fit the data on total cases of COVID-19 from March 6, 2020, to July 20, 2020, and forecast the incidence. The "CT0-4" grading scale demonstrated low sensitivity (28%) but high specificity (95%). The best statistical model for describing the pandemic in Moscow was ETS with multiplicative trend, error, and season type. According to our calculations, with the predicted prevalence of 2.1%, the values of NPV and PPV would be 98% and 10%, correspondingly. We associate the low sensitivity and PPV values with the small sample size of the patients with severe symptoms and non-optimal methodological setup for measuring these specific characteristics. The "CT0-4" grading scale was highly specific and predictive for identifying admissions to hospitals of COVID-19 patients. Despite the ambiguous accuracy, chest CT proved to be an effective practical tool for patient management during the pandemic, provided that the necessary infrastructure and human resources are available.