金属/锑化物界面的费米级钉钉及基于锑化物的金属S/D肖特基pmosfet的演示

Z. Yuan, A. Nainani, J. Lin, B. R. Bennett, J. B. Boos, M. Ancona, K. Saraswat
{"title":"金属/锑化物界面的费米级钉钉及基于锑化物的金属S/D肖特基pmosfet的演示","authors":"Z. Yuan, A. Nainani, J. Lin, B. R. Bennett, J. B. Boos, M. Ancona, K. Saraswat","doi":"10.1109/DRC.2011.5994457","DOIUrl":null,"url":null,"abstract":"III–V semiconductors are considered as promising candidates to replace silicon as the channel material in future technology nodes for transistors [1]. III–V n-channel MOSFETs have been extensively studied [2–4], showing high electron mobility. However, one of the most critical challenges in realizing high performance III–V MOSFETs is the difficulties in source/drain (S/D) design including parasitic resistance due to low solubility and poor activation of dopant and the “source starvation” effect due to low density of states [5–6]. Annealing of implant damage after S/D ion-implantation is also more problematic in III–V's due to the presence of 2 or more atomic species vs. group IV semiconductors (Fig.1). Use of Schottky-barrier (SB) metal S/D is a promising strategy to overcome these limitations [7]. Meanwhile, for III–V based CMOS logic, achieving a high mobility pMOSFET in a III–V channel remains a challenge. Antimony (Sb) based compound semiconductors have the highest electron and hole mobilities amongst all III–V materials. Recently, high performance strained channel InGaSb pMOSFETs [8] have been demonstrated. In this paper, we study the metal contact to antimonides compound. Good metal contact formed on p-type material and current suppression on n-type samples is attributed to the Fermi-level pinning at metal/antimonide interface and charge-neutral level being near the valence band edge. Schottky-barrier S/D p-MOSFETs is proposed and experimentally demonstrated which combines an InxGa1−xSb channel for good hole transport with metal S/D for low access resistance.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fermi-level pinning at metal/antimonides interface and demonstration of antimonides-based metal S/D Schottky pMOSFETs\",\"authors\":\"Z. Yuan, A. Nainani, J. Lin, B. R. Bennett, J. B. Boos, M. Ancona, K. Saraswat\",\"doi\":\"10.1109/DRC.2011.5994457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"III–V semiconductors are considered as promising candidates to replace silicon as the channel material in future technology nodes for transistors [1]. III–V n-channel MOSFETs have been extensively studied [2–4], showing high electron mobility. However, one of the most critical challenges in realizing high performance III–V MOSFETs is the difficulties in source/drain (S/D) design including parasitic resistance due to low solubility and poor activation of dopant and the “source starvation” effect due to low density of states [5–6]. Annealing of implant damage after S/D ion-implantation is also more problematic in III–V's due to the presence of 2 or more atomic species vs. group IV semiconductors (Fig.1). Use of Schottky-barrier (SB) metal S/D is a promising strategy to overcome these limitations [7]. Meanwhile, for III–V based CMOS logic, achieving a high mobility pMOSFET in a III–V channel remains a challenge. Antimony (Sb) based compound semiconductors have the highest electron and hole mobilities amongst all III–V materials. Recently, high performance strained channel InGaSb pMOSFETs [8] have been demonstrated. In this paper, we study the metal contact to antimonides compound. Good metal contact formed on p-type material and current suppression on n-type samples is attributed to the Fermi-level pinning at metal/antimonide interface and charge-neutral level being near the valence band edge. Schottky-barrier S/D p-MOSFETs is proposed and experimentally demonstrated which combines an InxGa1−xSb channel for good hole transport with metal S/D for low access resistance.\",\"PeriodicalId\":107059,\"journal\":{\"name\":\"69th Device Research Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"69th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2011.5994457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

III-V半导体被认为是未来晶体管技术节点中取代硅作为通道材料的有希望的候选者[1]。III-V型n沟道mosfet已被广泛研究[2-4],具有高电子迁移率。然而,实现高性能III-V型mosfet的最关键挑战之一是源/漏极(S/D)设计的困难,包括由于掺杂剂的低溶解度和低激活性导致的寄生电阻以及由于低态密度导致的“源饥饿”效应[5-6]。与IV族半导体相比,S/D离子注入后植入物损伤的退火在III-V族半导体中也更成问题,因为存在2种或更多的原子种类(图1)。使用肖特基势垒(SB)金属S/D是克服这些限制的一种很有前途的策略[7]。同时,对于基于III-V的CMOS逻辑,在III-V通道中实现高迁移率的pMOSFET仍然是一个挑战。锑基化合物半导体在所有III-V类材料中具有最高的电子和空穴迁移率。最近,高性能应变通道InGaSb pmosfet[8]已被证明。本文研究了金属与锑化物化合物的接触。在p型材料上形成良好的金属接触和在n型样品上抑制电流归因于金属/锑化物界面处的费米能级钉住和价带边缘附近的电荷中性能级。提出了肖特基势垒S/D p- mosfet,并通过实验证明了它结合了具有良好空穴传输性能的InxGa1−xSb通道和具有低接入电阻的金属S/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fermi-level pinning at metal/antimonides interface and demonstration of antimonides-based metal S/D Schottky pMOSFETs
III–V semiconductors are considered as promising candidates to replace silicon as the channel material in future technology nodes for transistors [1]. III–V n-channel MOSFETs have been extensively studied [2–4], showing high electron mobility. However, one of the most critical challenges in realizing high performance III–V MOSFETs is the difficulties in source/drain (S/D) design including parasitic resistance due to low solubility and poor activation of dopant and the “source starvation” effect due to low density of states [5–6]. Annealing of implant damage after S/D ion-implantation is also more problematic in III–V's due to the presence of 2 or more atomic species vs. group IV semiconductors (Fig.1). Use of Schottky-barrier (SB) metal S/D is a promising strategy to overcome these limitations [7]. Meanwhile, for III–V based CMOS logic, achieving a high mobility pMOSFET in a III–V channel remains a challenge. Antimony (Sb) based compound semiconductors have the highest electron and hole mobilities amongst all III–V materials. Recently, high performance strained channel InGaSb pMOSFETs [8] have been demonstrated. In this paper, we study the metal contact to antimonides compound. Good metal contact formed on p-type material and current suppression on n-type samples is attributed to the Fermi-level pinning at metal/antimonide interface and charge-neutral level being near the valence band edge. Schottky-barrier S/D p-MOSFETs is proposed and experimentally demonstrated which combines an InxGa1−xSb channel for good hole transport with metal S/D for low access resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Rump sessions Circuit applications based on solution-processed zinc-tin oxide TFTs 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Effect of disorder on superfluidity in double layer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1