{"title":"自主机器人导航策略的高效强化学习","authors":"J. Millán, C. Torras","doi":"10.1109/IROS.1994.407414","DOIUrl":null,"url":null,"abstract":"Proposes a reinforcement learning architecture that allows an autonomous robot to acquire efficient navigation strategies in a few trials. Besides fast learning, the architecture has 3 further appealing features. (1) Since it learns from built-in reflexes, the robot is operational from the very beginning. (2) The robot improves its performance incrementally as it interacts with an initially unknown environment, and it ends up learning to avoid collisions even if its sensors cannot detect the obstacles. This is a definite advantage over non-learning reactive robots. (3) The robot exhibits high tolerance to noisy sensory data and good generalization abilities. All these features make this learning robot's architecture very well suited to real-world applications. The authors report experimental results obtained with a real mobile robot in an indoor environment that demonstrate the feasibility of this approach.<<ETX>>","PeriodicalId":437805,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Efficient reinforcement learning of navigation strategies in an autonomous robot\",\"authors\":\"J. Millán, C. Torras\",\"doi\":\"10.1109/IROS.1994.407414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a reinforcement learning architecture that allows an autonomous robot to acquire efficient navigation strategies in a few trials. Besides fast learning, the architecture has 3 further appealing features. (1) Since it learns from built-in reflexes, the robot is operational from the very beginning. (2) The robot improves its performance incrementally as it interacts with an initially unknown environment, and it ends up learning to avoid collisions even if its sensors cannot detect the obstacles. This is a definite advantage over non-learning reactive robots. (3) The robot exhibits high tolerance to noisy sensory data and good generalization abilities. All these features make this learning robot's architecture very well suited to real-world applications. The authors report experimental results obtained with a real mobile robot in an indoor environment that demonstrate the feasibility of this approach.<<ETX>>\",\"PeriodicalId\":437805,\"journal\":{\"name\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1994.407414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1994.407414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient reinforcement learning of navigation strategies in an autonomous robot
Proposes a reinforcement learning architecture that allows an autonomous robot to acquire efficient navigation strategies in a few trials. Besides fast learning, the architecture has 3 further appealing features. (1) Since it learns from built-in reflexes, the robot is operational from the very beginning. (2) The robot improves its performance incrementally as it interacts with an initially unknown environment, and it ends up learning to avoid collisions even if its sensors cannot detect the obstacles. This is a definite advantage over non-learning reactive robots. (3) The robot exhibits high tolerance to noisy sensory data and good generalization abilities. All these features make this learning robot's architecture very well suited to real-world applications. The authors report experimental results obtained with a real mobile robot in an indoor environment that demonstrate the feasibility of this approach.<>