基于字典学习和突触归一化的神经回路中的脉冲LCA

Diego Chavez Arana, Alpha Renner, A. Sornborger
{"title":"基于字典学习和突触归一化的神经回路中的脉冲LCA","authors":"Diego Chavez Arana, Alpha Renner, A. Sornborger","doi":"10.1145/3584954.3584968","DOIUrl":null,"url":null,"abstract":"The Locally Competitive Algorithm (LCA) [17, 18] was put forward as a model of primary visual cortex [14, 17] and has been used extensively as a sparse coding algorithm for multivariate data. LCA has seen implementations on neuromorphic processors, including IBM’s TrueNorth processor [10], and Intel’s neuromorphic research processor, Loihi, which show that it can be very efficient with respect to the power resources it consumes [8]. When combined with dictionary learning [13], the LCA algorithm encounters synaptic instability [24], where, as a synapse’s strength grows, its activity increases, further enhancing synaptic strength, leading to a runaway condition, where synapses become saturated [3, 15]. A number of approaches have been suggested to stabilize this phenomenon [1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the cost function used to generate LCA updates, synaptic normalization could be achieved, eliminating synaptic runaway [7]. It was also shown that the resulting algorithm could be implemented in a firing rate model [7]. Here, we implement a probabilistic approximation to this firing rate model as a spiking LCA algorithm that includes dictionary learning and synaptic normalization. The algorithm is based on a synfire-gated synfire chain-based information control network in concert with Hebbian synapses [16, 19]. We show that this algorithm results in correct classification on numeric data taken from the MNIST dataset. LA-UR-22-33004","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiking LCA in a Neural Circuit with Dictionary Learning and Synaptic Normalization\",\"authors\":\"Diego Chavez Arana, Alpha Renner, A. Sornborger\",\"doi\":\"10.1145/3584954.3584968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Locally Competitive Algorithm (LCA) [17, 18] was put forward as a model of primary visual cortex [14, 17] and has been used extensively as a sparse coding algorithm for multivariate data. LCA has seen implementations on neuromorphic processors, including IBM’s TrueNorth processor [10], and Intel’s neuromorphic research processor, Loihi, which show that it can be very efficient with respect to the power resources it consumes [8]. When combined with dictionary learning [13], the LCA algorithm encounters synaptic instability [24], where, as a synapse’s strength grows, its activity increases, further enhancing synaptic strength, leading to a runaway condition, where synapses become saturated [3, 15]. A number of approaches have been suggested to stabilize this phenomenon [1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the cost function used to generate LCA updates, synaptic normalization could be achieved, eliminating synaptic runaway [7]. It was also shown that the resulting algorithm could be implemented in a firing rate model [7]. Here, we implement a probabilistic approximation to this firing rate model as a spiking LCA algorithm that includes dictionary learning and synaptic normalization. The algorithm is based on a synfire-gated synfire chain-based information control network in concert with Hebbian synapses [16, 19]. We show that this algorithm results in correct classification on numeric data taken from the MNIST dataset. LA-UR-22-33004\",\"PeriodicalId\":375527,\"journal\":{\"name\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584954.3584968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3584968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部竞争算法(local Competitive Algorithm, LCA)[17,18]作为初级视觉皮层的一种模型被提出[14,17],并被广泛用作多变量数据的稀疏编码算法。LCA已经在神经形态处理器上实现,包括IBM的TrueNorth处理器[10]和英特尔的神经形态研究处理器Loihi,这表明它可以非常高效地消耗功率资源[8]。当与字典学习相结合[13]时,LCA算法会遇到突触不稳定性[24],随着突触强度的增加,其活动也会增加,从而进一步增强突触强度,从而导致突触饱和的失控状态[3,15]。已经提出了许多方法来稳定这一现象[1,2,5,7,12]。先前的研究表明,通过扩展用于生成LCA更新的代价函数,可以实现突触归一化,从而消除突触失控[7]。研究还表明,所得算法可以在发射速率模型中实现[7]。在这里,我们实现了这个放电率模型的概率近似,作为一个包括字典学习和突触归一化的尖峰LCA算法。该算法基于与Hebbian突触协同的同步同步链信息控制网络[16,19]。我们证明了该算法对MNIST数据集中的数字数据进行了正确的分类。拉-乌尔- 22 - 33004
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spiking LCA in a Neural Circuit with Dictionary Learning and Synaptic Normalization
The Locally Competitive Algorithm (LCA) [17, 18] was put forward as a model of primary visual cortex [14, 17] and has been used extensively as a sparse coding algorithm for multivariate data. LCA has seen implementations on neuromorphic processors, including IBM’s TrueNorth processor [10], and Intel’s neuromorphic research processor, Loihi, which show that it can be very efficient with respect to the power resources it consumes [8]. When combined with dictionary learning [13], the LCA algorithm encounters synaptic instability [24], where, as a synapse’s strength grows, its activity increases, further enhancing synaptic strength, leading to a runaway condition, where synapses become saturated [3, 15]. A number of approaches have been suggested to stabilize this phenomenon [1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the cost function used to generate LCA updates, synaptic normalization could be achieved, eliminating synaptic runaway [7]. It was also shown that the resulting algorithm could be implemented in a firing rate model [7]. Here, we implement a probabilistic approximation to this firing rate model as a spiking LCA algorithm that includes dictionary learning and synaptic normalization. The algorithm is based on a synfire-gated synfire chain-based information control network in concert with Hebbian synapses [16, 19]. We show that this algorithm results in correct classification on numeric data taken from the MNIST dataset. LA-UR-22-33004
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sigma-Delta Networks for Robot Arm Control Easy and efficient spike-based Machine Learning with mlGeNN SupportHDC: Hyperdimensional Computing with Scalable Hypervector Sparsity Exploring Information-Theoretic Criteria to Accelerate the Tuning of Neuromorphic Level-Crossing ADCs Demonstration of neuromorphic sequence learning on a memristive array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1