{"title":"Transfer Fonksiyonları Kullanarak İkili Güve-Alev Optimizasyonu Algoritmalarının Geliştirilmesi ve Performanslarının Karşılaştırılması","authors":"Murat Karakoyun, Ahmet Özkiş","doi":"10.47112/neufmbd.2021.7","DOIUrl":null,"url":null,"abstract":"çözümü da Bu ikili optimizasyon problemlerinin çözümü için metasezgisel algoritmaların kullanımı Literatürde yer alan metasezgisel algoritmaların çoğu, sürekli problemlerin çözümüne uygun bir yapıya sahip olduğu için bu algoritmaların ikili problemleri çözebilecek şekilde düzenlenmesi gerekir. Transfer fonksiyonları olarak isimlendirilen Many real-world problems such as power systems problems, network optimization, backpack problems are referred to as binary optimization problems. The solution of binary optimization problems with classical mathematical techniques often takes a long time or is not possible. For this reason, the use of metaheuristic algorithms for the solution of binary optimization problems is quite common. Since most of the metaheuristic algorithms in the literature have a structure suitable for solving continuous problems, these algorithms should be arranged in a way that can solve binary problems. It is possible to convert continuous algorithms to binary algorithms by means of some functions called transfer functions. In this study, 8 different algorithms were developed by arranging the Moth-Flame Optimization (GAO) algorithm, a nature-inspired metaheuristic algorithm proposed in recent years, with 8 different transfer functions. The developed algorithms were run on 15 different uncapacitated facility location problems taken from the OR-Library and evaluated according to an error metric called gap. When the results are examined, it is observed that the binary GAO algorithm developed with the S3 transfer function achieves the minimum gap value in 13 of 15 problems and is more successful than the algorithms developed with other transfer functions.","PeriodicalId":184558,"journal":{"name":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47112/neufmbd.2021.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文献中也有关于元算法的论述、这些问题都是通过算法解决的。Transfer fonksiyonları olarak isimlendirilen 许多实际问题,如电力系统问题、网络优化问题、背包问题等,都被称为二元优化问题。用经典数学技术解决二元优化问题往往需要很长时间,或者根本无法实现。因此,使用元启发式算法来解决二元优化问题已相当普遍。由于文献中的大多数元启发式算法都具有适合解决连续问题的结构,因此这些算法的排列方式应能解决二进制问题。通过一些称为转移函数的函数,可以将连续算法转换为二进制算法。在这项研究中,通过将飞蛾-火焰优化算法(GAO)与 8 种不同的转移函数进行排列,开发出了 8 种不同的算法,飞蛾-火焰优化算法是近年来提出的一种受自然启发的元启发算法。所开发的算法在 15 个不同的无容限设施定位问题上运行,这些问题来自 OR 库,并根据称为间隙的误差指标进行评估。结果表明,使用 S3 转移函数开发的二元 GAO 算法在 15 个问题中的 13 个问题上实现了最小间隙值,比使用其他转移函数开发的算法更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Fonksiyonları Kullanarak İkili Güve-Alev Optimizasyonu Algoritmalarının Geliştirilmesi ve Performanslarının Karşılaştırılması
çözümü da Bu ikili optimizasyon problemlerinin çözümü için metasezgisel algoritmaların kullanımı Literatürde yer alan metasezgisel algoritmaların çoğu, sürekli problemlerin çözümüne uygun bir yapıya sahip olduğu için bu algoritmaların ikili problemleri çözebilecek şekilde düzenlenmesi gerekir. Transfer fonksiyonları olarak isimlendirilen Many real-world problems such as power systems problems, network optimization, backpack problems are referred to as binary optimization problems. The solution of binary optimization problems with classical mathematical techniques often takes a long time or is not possible. For this reason, the use of metaheuristic algorithms for the solution of binary optimization problems is quite common. Since most of the metaheuristic algorithms in the literature have a structure suitable for solving continuous problems, these algorithms should be arranged in a way that can solve binary problems. It is possible to convert continuous algorithms to binary algorithms by means of some functions called transfer functions. In this study, 8 different algorithms were developed by arranging the Moth-Flame Optimization (GAO) algorithm, a nature-inspired metaheuristic algorithm proposed in recent years, with 8 different transfer functions. The developed algorithms were run on 15 different uncapacitated facility location problems taken from the OR-Library and evaluated according to an error metric called gap. When the results are examined, it is observed that the binary GAO algorithm developed with the S3 transfer function achieves the minimum gap value in 13 of 15 problems and is more successful than the algorithms developed with other transfer functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hassas Nokta Konumlama (PPP) Yöntemindeki Hata Kaynaklarının Konum Belirleme Performansı Üzerindeki Etkilerinin İncelenmesi: PPPH Yazılımı Örneği Kaynaklı Bağlantıya Sahip Karmaşık Bir Yapıda Goldak Modeli Kullanılarak Distorsiyonların ve Kalıntı Gerilmelerin Nümerik Analizler ile Belirlenmesi Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing Some Results on an Iterative Algorithm Associated with Enriched Contractions in Banach Spaces Maximum Likelihood Estimation for the Nakagami Distribution Using Particle Swarm Optimization Algorithm with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1