分子束外延生长的GaSb热光伏电池发射极厚度优化

S. Abdallah, D. Herrera, B. Conlon, N. Rahimi, L. Lester
{"title":"分子束外延生长的GaSb热光伏电池发射极厚度优化","authors":"S. Abdallah, D. Herrera, B. Conlon, N. Rahimi, L. Lester","doi":"10.1117/12.2187487","DOIUrl":null,"url":null,"abstract":"GaSb thermophotovoltaic (TPV) devices were fabricated using a Molecular Beam Epitaxy (MBE) technique. Different emitter thicknesses (de) were studied to maximize the TPV cell’s short circuit current density. In this regard, the fabricated TPV device’s emitter was incrementally wet-etched and characterized to find the optimal thickness value. Simulations were performed using the Crosslight APSYS® platform over the full-spectrum range in order to predict device performance for different designs, while maximizing the photocurrent generation and enhancing the emitter sheet resistance. TPV devices were characterized electrically and optically. These experimental data showed that the etched emitter has minimal impact on the measured short circuit current density (Jsc) while simulated results demonstrated an optimal de of 200 nm.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Emitter thickness optimization for GaSb thermophotovoltaic cells grown by molecular beam epitaxy\",\"authors\":\"S. Abdallah, D. Herrera, B. Conlon, N. Rahimi, L. Lester\",\"doi\":\"10.1117/12.2187487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaSb thermophotovoltaic (TPV) devices were fabricated using a Molecular Beam Epitaxy (MBE) technique. Different emitter thicknesses (de) were studied to maximize the TPV cell’s short circuit current density. In this regard, the fabricated TPV device’s emitter was incrementally wet-etched and characterized to find the optimal thickness value. Simulations were performed using the Crosslight APSYS® platform over the full-spectrum range in order to predict device performance for different designs, while maximizing the photocurrent generation and enhancing the emitter sheet resistance. TPV devices were characterized electrically and optically. These experimental data showed that the etched emitter has minimal impact on the measured short circuit current density (Jsc) while simulated results demonstrated an optimal de of 200 nm.\",\"PeriodicalId\":142821,\"journal\":{\"name\":\"SPIE Optics + Photonics for Sustainable Energy\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2187487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用分子束外延(MBE)技术制备了GaSb热光伏(TPV)器件。为了使TPV电池的短路电流密度最大化,研究了不同的发射极厚度。为此,对制造的TPV器件的发射极进行了增量湿蚀刻和表征,以找到最佳厚度值。为了预测不同设计的器件性能,同时最大化光电流产生并增强发射极片电阻,使用Crosslight APSYS®平台在全光谱范围内进行了模拟。对TPV器件进行了电学和光学表征。这些实验数据表明,蚀刻发射极对测量的短路电流密度(Jsc)的影响最小,而模拟结果表明,最佳的短路电流密度为200 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emitter thickness optimization for GaSb thermophotovoltaic cells grown by molecular beam epitaxy
GaSb thermophotovoltaic (TPV) devices were fabricated using a Molecular Beam Epitaxy (MBE) technique. Different emitter thicknesses (de) were studied to maximize the TPV cell’s short circuit current density. In this regard, the fabricated TPV device’s emitter was incrementally wet-etched and characterized to find the optimal thickness value. Simulations were performed using the Crosslight APSYS® platform over the full-spectrum range in order to predict device performance for different designs, while maximizing the photocurrent generation and enhancing the emitter sheet resistance. TPV devices were characterized electrically and optically. These experimental data showed that the etched emitter has minimal impact on the measured short circuit current density (Jsc) while simulated results demonstrated an optimal de of 200 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system reliability program at Sandia National Labs: From material-level to system-level analysis (Presentation Recording) A novel method for mapping open-circuit voltage in solar cells with nanoscale resolution (Presentation Recording) Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording) Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording) Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1