光可重构门阵列上高速擦洗的辐射耐受性论证

Takumi Fujimori, Minoru Watanabe
{"title":"光可重构门阵列上高速擦洗的辐射耐受性论证","authors":"Takumi Fujimori, Minoru Watanabe","doi":"10.1109/SOCC.2017.8226014","DOIUrl":null,"url":null,"abstract":"Recently, field programmable gate arrays (FPGAs) are anticipated for use in high-radiation environments such as the Fukushima Daiichi nuclear power plant. According to recent news, regions with 650 Sv/h radiation have been found at the Fukushima Daiichi nuclear power plant. Under such extremely high radiation environments, high-speed scrubbing operations must be used to maintain correct circuit information on the configuration memory of programmable gate arrays. Up to now, optical high-speed scrubbing based on an optically reconfigurable gate array has been proposed. This paper presents a demonstration of the radiation tolerance of the optical high-speed scrubbing based on an optically reconfigurable gate array VLSI by using lasers that emulate strong radiation environments. It has been confirmed that 70-ns period high-speed scrubbing operations on the optically reconfigurable gate array are never disturbed by the emulated radiation.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation tolerance demonstration of high-speed scrubbing on an optically reconfigurable gate array\",\"authors\":\"Takumi Fujimori, Minoru Watanabe\",\"doi\":\"10.1109/SOCC.2017.8226014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, field programmable gate arrays (FPGAs) are anticipated for use in high-radiation environments such as the Fukushima Daiichi nuclear power plant. According to recent news, regions with 650 Sv/h radiation have been found at the Fukushima Daiichi nuclear power plant. Under such extremely high radiation environments, high-speed scrubbing operations must be used to maintain correct circuit information on the configuration memory of programmable gate arrays. Up to now, optical high-speed scrubbing based on an optically reconfigurable gate array has been proposed. This paper presents a demonstration of the radiation tolerance of the optical high-speed scrubbing based on an optically reconfigurable gate array VLSI by using lasers that emulate strong radiation environments. It has been confirmed that 70-ns period high-speed scrubbing operations on the optically reconfigurable gate array are never disturbed by the emulated radiation.\",\"PeriodicalId\":366264,\"journal\":{\"name\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2017.8226014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,现场可编程门阵列(fpga)有望用于高辐射环境,如福岛第一核电站。根据最近的新闻,在福岛第一核电站发现了650西沃特/小时的辐射区域。在这种极高的辐射环境下,必须使用高速擦洗操作在可编程门阵列的配置存储器上保持正确的电路信息。目前,已经提出了一种基于光可重构门阵列的光高速擦洗。本文利用模拟强辐射环境的激光器,演示了基于光可重构门阵列VLSI的光高速擦洗的辐射容限。仿真结果表明,在光可重构门阵列上进行的70 ns周期的高速清洗操作不会受到模拟辐射的干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation tolerance demonstration of high-speed scrubbing on an optically reconfigurable gate array
Recently, field programmable gate arrays (FPGAs) are anticipated for use in high-radiation environments such as the Fukushima Daiichi nuclear power plant. According to recent news, regions with 650 Sv/h radiation have been found at the Fukushima Daiichi nuclear power plant. Under such extremely high radiation environments, high-speed scrubbing operations must be used to maintain correct circuit information on the configuration memory of programmable gate arrays. Up to now, optical high-speed scrubbing based on an optically reconfigurable gate array has been proposed. This paper presents a demonstration of the radiation tolerance of the optical high-speed scrubbing based on an optically reconfigurable gate array VLSI by using lasers that emulate strong radiation environments. It has been confirmed that 70-ns period high-speed scrubbing operations on the optically reconfigurable gate array are never disturbed by the emulated radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-aware line-based power modeling methodology for image signal processor Power and area evaluation of a fault-tolerant network-on-chip A low-pass continuous-time delta-sigma interface circuit for wideband MEMS gyroscope readout ASIC Lithography hotspot detection: From shallow to deep learning The path to global connectivity — Wireless communication enters the next generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1