基于对称多处理器的支持向量机并行执行

N. S. Md Salleh, Amirul Shafiq Bin Mohamad Shariff, Muhammad Ikhwan Afiq Bin Kamsani, S. Nazeri
{"title":"基于对称多处理器的支持向量机并行执行","authors":"N. S. Md Salleh, Amirul Shafiq Bin Mohamad Shariff, Muhammad Ikhwan Afiq Bin Kamsani, S. Nazeri","doi":"10.1109/ICIMU.2014.7066610","DOIUrl":null,"url":null,"abstract":"Parallel computing is a simultaneous use of multiple compute resources such as processors to solve difficult computational problems. It has been used in high-end computing areas such as pattern recognition, defense, web search engine, and medical diagnosis. This paper focuses on the implementation of pattern classification technique, Support Vector Machine (SVM) using Symmetric Multi-Processor (SMP) approach. We have carried out a performance analysis to benchmark the sequential SVM program against the SMP approach. The result shows that the parallelization of SVM training achieves a better performance than the sequential code speed-ups by 15.9s.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel execution of SVM using Symmetrical Multi-Processor (LIBSVM-OMP)\",\"authors\":\"N. S. Md Salleh, Amirul Shafiq Bin Mohamad Shariff, Muhammad Ikhwan Afiq Bin Kamsani, S. Nazeri\",\"doi\":\"10.1109/ICIMU.2014.7066610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel computing is a simultaneous use of multiple compute resources such as processors to solve difficult computational problems. It has been used in high-end computing areas such as pattern recognition, defense, web search engine, and medical diagnosis. This paper focuses on the implementation of pattern classification technique, Support Vector Machine (SVM) using Symmetric Multi-Processor (SMP) approach. We have carried out a performance analysis to benchmark the sequential SVM program against the SMP approach. The result shows that the parallelization of SVM training achieves a better performance than the sequential code speed-ups by 15.9s.\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

并行计算是指同时使用多个计算资源(如处理器)来解决复杂的计算问题。它已被应用于模式识别、国防、网络搜索引擎、医疗诊断等高端计算领域。本文重点研究了基于对称多处理器(SMP)方法的模式分类技术支持向量机(SVM)的实现。我们对顺序支持向量机程序进行了性能分析,以对SMP方法进行基准测试。结果表明,支持向量机并行化训练比顺序码加速提高了15.9s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel execution of SVM using Symmetrical Multi-Processor (LIBSVM-OMP)
Parallel computing is a simultaneous use of multiple compute resources such as processors to solve difficult computational problems. It has been used in high-end computing areas such as pattern recognition, defense, web search engine, and medical diagnosis. This paper focuses on the implementation of pattern classification technique, Support Vector Machine (SVM) using Symmetric Multi-Processor (SMP) approach. We have carried out a performance analysis to benchmark the sequential SVM program against the SMP approach. The result shows that the parallelization of SVM training achieves a better performance than the sequential code speed-ups by 15.9s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1