Sangwook Park, C. Cho, Younglo Lee, A. D. Costa, Sangho Lee, Hanseok Ko
{"title":"基于多紧凑高频表面波雷达的沿海船舶监测","authors":"Sangwook Park, C. Cho, Younglo Lee, A. D. Costa, Sangho Lee, Hanseok Ko","doi":"10.1109/MFI.2017.8170381","DOIUrl":null,"url":null,"abstract":"Recently, due to wide observable range as well as low power consumption, the usage of high frequency radars has been expanded to ship detection for both harbor management and national security. However, range and angular resolutions are typically low in high frequency radars due to environmental and physical constraints. Thus, a target location detected on a high frequency radar system is far away from its real position. To reduce the error of detection, a location estimation method is proposed based on multiple high frequency radars. With use of the Bayesian approach, a more accurate final location can be determined by posterior mean. For this work, both likelihood and prior probability are modelled. Effectiveness of the proposed method is shown through appropriate simulation that was conducted according to signal to clutter plus noise ratio. Results are shown to verify the proposed method improves both locating and detecting performances.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coastal ship monitoring based on multiple compact high frequency surface wave radars\",\"authors\":\"Sangwook Park, C. Cho, Younglo Lee, A. D. Costa, Sangho Lee, Hanseok Ko\",\"doi\":\"10.1109/MFI.2017.8170381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, due to wide observable range as well as low power consumption, the usage of high frequency radars has been expanded to ship detection for both harbor management and national security. However, range and angular resolutions are typically low in high frequency radars due to environmental and physical constraints. Thus, a target location detected on a high frequency radar system is far away from its real position. To reduce the error of detection, a location estimation method is proposed based on multiple high frequency radars. With use of the Bayesian approach, a more accurate final location can be determined by posterior mean. For this work, both likelihood and prior probability are modelled. Effectiveness of the proposed method is shown through appropriate simulation that was conducted according to signal to clutter plus noise ratio. Results are shown to verify the proposed method improves both locating and detecting performances.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coastal ship monitoring based on multiple compact high frequency surface wave radars
Recently, due to wide observable range as well as low power consumption, the usage of high frequency radars has been expanded to ship detection for both harbor management and national security. However, range and angular resolutions are typically low in high frequency radars due to environmental and physical constraints. Thus, a target location detected on a high frequency radar system is far away from its real position. To reduce the error of detection, a location estimation method is proposed based on multiple high frequency radars. With use of the Bayesian approach, a more accurate final location can be determined by posterior mean. For this work, both likelihood and prior probability are modelled. Effectiveness of the proposed method is shown through appropriate simulation that was conducted according to signal to clutter plus noise ratio. Results are shown to verify the proposed method improves both locating and detecting performances.