RAPTA:基于路径的静态时序分析实时预测的分层表示学习解决方案

Tanmoy Chowdhury, Ashka Vakil, B. S. Latibari, Seyed Aresh Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj Pudukotai Dinakarrao, H. Homayoun, I. Savidis, Liang Zhao, Avesta Sasan
{"title":"RAPTA:基于路径的静态时序分析实时预测的分层表示学习解决方案","authors":"Tanmoy Chowdhury, Ashka Vakil, B. S. Latibari, Seyed Aresh Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj Pudukotai Dinakarrao, H. Homayoun, I. Savidis, Liang Zhao, Avesta Sasan","doi":"10.1145/3526241.3530831","DOIUrl":null,"url":null,"abstract":"This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"19 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RAPTA: A Hierarchical Representation Learning Solution For Real-Time Prediction of Path-Based Static Timing Analysis\",\"authors\":\"Tanmoy Chowdhury, Ashka Vakil, B. S. Latibari, Seyed Aresh Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj Pudukotai Dinakarrao, H. Homayoun, I. Savidis, Liang Zhao, Avesta Sasan\",\"doi\":\"10.1145/3526241.3530831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"19 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

RAPTA是一种定制的表征学习体系结构,用于特征工程的自动化,并在物理设计周期的早期预测基于路径的时序分析的结果。RAPTA具有以下优点:1)在32nm工艺下,具有较高的精度,误差范围为3.9ps~16.05ps。2) RAPTA的架构不会随着特征集的大小而改变,3)RAPTA不需要人工输入特征工程。据我们所知,这是第一项工作,其中双向长短期记忆(Bi-LSTM)表示学习用于消化特征工程的原始信息,其中潜在特征的生成和基于多层感知器(MLP)的时间预测回归可以端到端进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAPTA: A Hierarchical Representation Learning Solution For Real-Time Prediction of Path-Based Static Timing Analysis
This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Power Consumption using Approximate Encoding for CNN Accelerators at the Edge Design and Evaluation of In-Exact Compressor based Approximate Multipliers MOCCA: A Process Variation Tolerant Systolic DNN Accelerator using CNFETs in Monolithic 3D ENTANGLE: An Enhanced Logic-locking Technique for Thwarting SAT and Structural Attacks Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1