{"title":"搭载EBG结构的毫米波纺织天线,用于5G和物联网应用","authors":"Wissem El May, I. Sfar, J. Ribero, L. Osman","doi":"10.1109/mms48040.2019.9157278","DOIUrl":null,"url":null,"abstract":"This paper describes the antenna performances made from common clothing fabrics for 5G and Internet of Things (IoT) applications by employing electromagnetic bandgap (EBG) structures as the substrate of the antenna for gain enhancement in millimeter-wave frequency. A suspended transmission line method has been taken into account for the characterization of the EBG structure to obtain the optimum design. Furthermore, the optimum unit cell, which is loaded onto the antenna, is easy to implement and allows obtaining a Peak Gain of 9.79 dBi in 26 GHz band.","PeriodicalId":373813,"journal":{"name":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A millimeter-wave textile antenna loaded with EBG structures for 5G and IoT applications\",\"authors\":\"Wissem El May, I. Sfar, J. Ribero, L. Osman\",\"doi\":\"10.1109/mms48040.2019.9157278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the antenna performances made from common clothing fabrics for 5G and Internet of Things (IoT) applications by employing electromagnetic bandgap (EBG) structures as the substrate of the antenna for gain enhancement in millimeter-wave frequency. A suspended transmission line method has been taken into account for the characterization of the EBG structure to obtain the optimum design. Furthermore, the optimum unit cell, which is loaded onto the antenna, is easy to implement and allows obtaining a Peak Gain of 9.79 dBi in 26 GHz band.\",\"PeriodicalId\":373813,\"journal\":{\"name\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mms48040.2019.9157278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms48040.2019.9157278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A millimeter-wave textile antenna loaded with EBG structures for 5G and IoT applications
This paper describes the antenna performances made from common clothing fabrics for 5G and Internet of Things (IoT) applications by employing electromagnetic bandgap (EBG) structures as the substrate of the antenna for gain enhancement in millimeter-wave frequency. A suspended transmission line method has been taken into account for the characterization of the EBG structure to obtain the optimum design. Furthermore, the optimum unit cell, which is loaded onto the antenna, is easy to implement and allows obtaining a Peak Gain of 9.79 dBi in 26 GHz band.